无穷级数

更新: 作者: 资源:

特别注意

本文件因重构而尚未勘误,
其中有些小错误显而易见。

数列极限

若数列$S_n$的极限值收敛于$S$,则对于任意的正实数$ε$,必有任意多项落在区间$[S - ε, S + ε]$内,且至多有限项落在区间$[S - ε, S + ε]$外。

$\lim\limits_{n⇝∞⁺} S_n ⇝ S ≠ ∞$ $\lim\limits_{n⇝∞⁺} S_n ⇝ S⁺ ≠ ∞⁺$ $\lim\limits_{n⇝∞⁺} S_n ⇝ S⁻ ≠ ∞⁻$    
$\lim\limits_{n⇝∞⁺} S_n - S ⇝ 0⁺$ $\lim\limits_{n⇝∞⁺} S_n - S⁺ ⇝ 0⁺$ $\lim\limits_{n⇝∞⁺} S_n - S⁻ ⇝ 0⁻$
$∀ε>0;∃N∈ℕ;∀n≥N; S_n - S ≤ ε$ $∀ε>0;∃N∈ℕ;∀n≥N; 0⁺ ≤ S_n - S ≤ ε$ $∀ε>0;∃N∈ℕ;∀n≥N; ε ≤ S_n - S ≤ 0⁻$
$∀ε>0;∃N∈ℕ;∀n≥N; S - ε ≤ S_n ≤ S + ε$ $∀ε>0;∃N∈ℕ;∀n≥N; S + 0⁺ ≤ S_n ≤ S + ε$ $∀ε>0;∃N∈ℕ;∀n≥N; S + ε ≤ S_n ≤ S + 0⁻$    

若数列$S_n$的极限值发散于$∞$,则对于任意的正实数$ε$,必有任意多项落在区间$[-ε, +ε]$外,且至多有限项落在区间$[-ε, +ε]$内。

$\lim\limits_{n⇝∞⁺} S_n ⇝ ∞$ $\lim\limits_{n⇝∞⁺} S_n ⇝ ∞⁺$ $\lim\limits_{n⇝∞⁺} S_n ⇝ ∞⁻$    
$\lim\limits_{n⇝∞⁺} S_n ⇝ ∞⁺$    
$∀ε>0;∃N∈ℕ;∀n≥N; S_n ≥ ε$ $∀ε>0;∃N∈ℕ;∀n≥N; S_n ≥ +ε$ $∀ε>0;∃N∈ℕ;∀n≥N; S_n ≤ -ε$
$∀ε>0;∃N∈ℕ;∀n≥N; [S_n ≤ -ε] ∨ [S_n ≥ +ε]$        

数列$S_n$的下极限与上极限。

$\varliminf\limits_{n⇝∞⁺} S_n ≡ \mathop{\lim\inf}\limits_{n⇝∞⁺} S_n ≡ \lim\limits_{n⇝∞⁺} \inf\limits_{m≥n} S_m$

$\varlimsup\limits_{n⇝∞⁺} S_n ≡ \mathop{\lim\sup}\limits_{n⇝∞⁺} S_n ≡ \lim\limits_{n⇝∞⁺} \sup\limits_{m≥n} S_m$

若数列$S_n$中有限多项发生改变,数列的敛散性不会改变。

若数列$S_n$的极限值收敛于$S$,则其上极限与其下极限相等,反之亦然。因此若数列$S_n$的极限值存在,则此极限值唯一确定。

$\left[ \lim\limits_{n⇝∞⁺} S_n ⇝ S \right] ⇔ \left[ \varliminf\limits_{n⇝∞⁺} S_n ⇝ S ⇜ \varlimsup\limits_{n⇝∞⁺} S_n \right]$

若数列$S_n$的极限值收敛于$S$,则其任何子数列$S_{n_m}$的极限值均收敛于S,反之亦然。

$\left[ \lim\limits_{n⇝∞⁺} S_n ⇝ S \right] ⇔ \left[ \lim\limits_{m⇝∞⁺} S_{n_m} ⇝ S \right]$

若数列$S_n$的极限值收敛于$S$,则其任意无穷项$S_m$与$S_n$之差为无穷小。

$[∀ε>0;∃N∈ℕ;∀n≥N; S_n - S < ε] ⇔ [∀ε>0;∃N∈ℕ;∀n,m≥N; S_m - S_n < ε]$

典例:数列$S_n = (-1)^n$的极限值不存在。

$\lim\limits_{m⇝∞⁺} S_{2·m} = \lim\limits_{m⇝∞⁺} (-1)^{2·m} ⇝ (+1) ≠ (-1) ⇜ \lim\limits_{m⇝∞⁺} (-1)^{2·m+1} = \lim\limits_{m⇝∞⁺} S_{2·m+1}$

$\varliminf\limits_{n⇝∞⁺} S_n ⇝ (-1) ≠ (+1) ⇜ \varlimsup\limits_{n⇝∞⁺} S_n$

典例:数列$S_n = \sin n$的极限值不存在。

$\varliminf\limits_{n⇝∞⁺} S_n = \varliminf\limits_{n_m⇝∞⁺}^{n_m∈\left(2·m·π-\frac{3}{4}·π,2·m·π-\frac{1}{4}·π\right)} \sin n_m < 0 < \varlimsup\limits_{n_m⇝∞⁺}^{n_m∈\left(2·m·π+\frac{1}{4}·π,2·m·π+\frac{3}{4}·π\right)} \sin n_m = \varlimsup\limits_{n⇝∞⁺} S_n$

若数列$S_n$的极限值收敛,则数列$S_n$有确界,反之不对。

$\left[ \lim\limits_{n⇝∞⁺} S_n ⇝ S ≠ ∞ \right] ⇒ \left[ ∀n∈ℕ; S_n ≤ \max\left\lbrace \left \inf S_n\right , \left \sup S_n \right \right\rbrace \right]$
若数列$ S_n $单调递增无上确界,则数列$ S_n $的极限值发散于$∞⁺$。$P ⇒ Q$
若数列$ S_n $单调递增有上确界,则数列$ S_n $的极限值必定收敛。$¬Q ⇒ ¬P$
$\left[ \lim\limits_{n⇝∞⁺} S_n^{↗} ⇝ ∞^{+} \right] ∨ \left[ \lim\limits_{n⇝∞⁺} S_n^{↘} ⇝ ∞^{-} \right] ⇒ \left[ \lim\limits_{n⇝∞⁺} S_n^{⤨} ⇝ ∞⁺ \right]$
$\left[ \lim\limits_{n⇝∞⁺} S_n^{⤨} ≤ \mathrm{Sup} \right] ⇒ \left[ \lim\limits_{n⇝∞⁺} S_n^{↗} ⇝ \sup S_n \right] ∧ \left[ \lim\limits_{n⇝∞⁺} S_n^{↘} ⇝ \inf S_n \right]$

典例:若数列$0 ≤ S_{n+m} ≤ S_{n} + S_{m}$,则数列$\dfrac{S_n}{n}$的极限值收敛。

$⇓$ $n \mathop{=}\limits_{0≤r≤m} m · q + r$ $⇒$ $\dfrac{1}{m} = \dfrac{q}{n} + \dfrac{r}{n · m}$
$⇓$ $\dfrac{S_n}{n} = \dfrac{S_{m·q+r} }{n} = \dfrac{q · S_{m} }{n} + \dfrac{S_{r} }{n} \mathop{≤}\limits^{0≤S_{m} } \dfrac{S_{m} }{m} + \dfrac{S_{r} }{n}$ $⇐$ $\dfrac{1}{m} ≥ \dfrac{q}{n}$
$⇓$ $\varlimsup\limits_{n⇝∞^{+} } \dfrac{S_{n} }{n} ≤ \varlimsup\limits_{n⇝∞^{+} } \left( \dfrac{S_{m} }{m} + \dfrac{S_{r} }{n} \right) = \dfrac{S_{m} }{m} + 0 = \dfrac{S_{m} }{m}$ $⇒$ $\varlimsup\limits_{n⇝∞^{+} } \dfrac{S_{n} }{n} ≤ \varliminf\limits_{m⇝∞^{+} } \dfrac{S_{m} }{m}$
$⇓$ $\varlimsup\limits_{n⇝∞^{+} } \dfrac{S_{n} }{n} = \lim\limits_{n⇝∞^{+} } \dfrac{S_{n} }{n} = \varliminf\limits_{n⇝∞^{+} } \dfrac{S_{n} }{n}$    

数列极限的运算性质

$\left[ \lim\limits_{n⇝∞⁺} S_n ⇝ S < T ⇜ \lim\limits_{n⇝∞⁺} T_n \right] ⇒ \left[ ∃N∈ℕ;∀n≥N; S_n < \dfrac{S + T}{2} < T_n \right]$

$\left[ ∃N∈ℕ;∀n≥N; S_n ≤ R_n ≤ T_n \right] ⇒ \left[ \lim\limits_{n⇝∞⁺} S_n ≤ \lim\limits_{n⇝∞⁺} R_n ≤ \lim\limits_{n⇝∞⁺} T_n \right]$

$⇓$ $\lim\limits_{n⇝∞⁺} S_n ⇝ S < T ⇜ \lim\limits_{n⇝∞⁺} T_n$
$⇓$ $∀ε=\dfrac{T - S}{2};∃N∈ℕ;∀n≥N; S_n < S + ε = S + \dfrac{T - S}{2} = \dfrac{S + T}{2} = T - \dfrac{T - S}{2} = T - ε < T_n$
$⇓$ $∃N∈ℕ;∀n≥N; S_n < \dfrac{S + T}{2} < T_n$

数列极限的运算性质。若$\lim\limits_{n⇝∞⁺} S_n ⇝ S$,且 $\lim\limits_{n⇝∞⁺} T_n ⇝ T$。

$\lim\limits_{n⇝∞⁺} [ S_n + T_n ] = \lim\limits_{n⇝∞⁺} S_n + \lim\limits_{n⇝∞⁺} T_n ⇝ S + T$

$\lim\limits_{n⇝∞⁺} [ S_n - T_n ] = \lim\limits_{n⇝∞⁺} S_n - \lim\limits_{n⇝∞⁺} T_n ⇝ S - T$

$\lim\limits_{n⇝∞⁺} [ S_n · T_n ] = \lim\limits_{n⇝∞⁺} S_n · \lim\limits_{n⇝∞⁺} T_n ⇝ S · T$

$\lim\limits_{n⇝∞⁺} \dfrac{S_n}{T_n} = \dfrac{\lim\limits_{n⇝∞⁺} S_n}{\lim\limits_{n⇝∞⁺} T_n} \mathop{⇝}\limits_{T≠0} \dfrac{S}{T}$

$\lim\limits_{n⇝∞⁺} [ \mathrm{Con} · S_n ] = \mathrm{Con} · \lim\limits_{n⇝∞⁺} S_n ⇝ \mathrm{Con} · S$

$⇓$ $[ ∀ε_1>0;∃N_1∈ℕ;∀n≥N_1; S_n - S < ε_1 ] ∧ [∀ε_2>0;∃N_2∈ℕ;∀n≥N_2; T_n - T < ε_2]$                                                        
$⇓$ $∀ε>0;∃N=\max\lbrace N_1,N_2 \rbrace;∀n≥N; (S_n + T_n) - (S + T) < S_n - S + T_n - T < ε_1 + ε_2 = ε$                                                    
$⇓$ $∀ε>0;∃N=\max\lbrace N_1,N_2 \rbrace;∀n≥N; (S_n - T_n) - (S - T) < S_n - S + T_n - T < ε_1 + ε_2 = ε$                                                    
$⇓$ $∀ε>0;∃N=\max\lbrace N_1,N_2 \rbrace;∀n≥N; S_n · T_n - S · T = (S_n · T_n - S_n · T) + (S_n · T - S · T) S_n · T_n - T + S_n - S · T ≤ \mathrm{Sup} · ε_2 + ε_1 · T = ε$                                    
$⇓$ $∀ε>0;∃N=\max\lbrace N_1,N_2 \rbrace;∀n≥N; \left \dfrac{S_n}{T_n} - \dfrac{S}{T} \right = \dfrac{ S_n · T - S · T_n }{ T_n · T } = \dfrac{ (S_n · T - S · T) + (S · T - S · T_n) }{ T_n · T } = \dfrac{ S_n - S · T + S · T - T_n }{ T_n · T } ≤ \dfrac{ε_1 · T + S · ε_2}{\mathrm{Inf} · T } = ε$

无穷级数

无穷级数的部分和

$S_{n+1} \mathop{≡≡}\limits^{S_0≡0} \sum\limits_{i=0}^n s_i$

无穷级数的极限

$\lim\limits_{n ⇝ ∞⁺} S_n ≡ \lim\limits_{n ⇝ ∞⁺} \sum\limits_{i=0}^{n} s_i ≡ \sum\limits_{i=0}^{∞⁺} s_i$

无穷级数的下极限与上极限

$\varliminf\limits_{n ⇝ ∞⁺} S_n ≡ \mathop{\lim\inf}\limits_{n ⇝ ∞⁺} S_n ≡ \lim\limits_{n ⇝ ∞⁺}\inf\limits_{m ≥ n} S_m ≡ \lim\limits_{n ⇝ ∞⁺}\inf\limits_{m ≥ n} \sum\limits_{i = 0}^m s_i$

$\varlimsup\limits_{n⇝∞⁺} S_n ≡ \mathop{\lim\sup}\limits_{n⇝∞⁺} S_n ≡ \lim\limits_{n⇝∞⁺}\sup\limits_{m≥n} S_m ≡ \lim\limits_{n⇝∞⁺}\sup\limits_{m≥n} \sum\limits_{i=0}^m s_i$

$\dfrac{1}{\varlimsup\limits_{n⇝∞⁺} T_n} = \varliminf\limits_{n⇝∞⁺} \dfrac{1}{T_n} = \varliminf\limits_{n⇝∞⁺} S_n ≤ \varlimsup\limits_{n⇝∞⁺} S_n = \varlimsup\limits_{n⇝∞⁺} \dfrac{1}{T_n} = \dfrac{1}{\varliminf\limits_{n⇝∞⁺} T_n}$

典例:无穷级数的下极限与上极限

$\varliminf\limits_{n ⇝ ∞⁺} \dfrac{1}{n} ⇝ 0, \varlimsup\limits_{n ⇝ ∞⁺} \dfrac{1}{n} ⇝ 0$

$\varliminf\limits_{n ⇝ ∞⁺} \sin\dfrac{n · \pi}{4} ⇝ -1, \varlimsup\limits_{n ⇝ ∞⁺} \sin\dfrac{n · \pi}{4} ⇝ +1$

无穷级数的极限之等价表述形式

$∀ε>0;∃N∈ℕ;∀n≥N; S_n - S < ε$
$∀ε>0;∃N∈ℕ;∀n≥N; \left \sum\limits_{i=0}^{n} s_i - S \right < ε$

无穷级数收敛

$\lim\limits_{n ⇝ ∞⁺} S_n ⇝ S$ 也即 $\lim\limits_{n ⇝ ∞⁺} S_n - S ⇝ 0$
$\sum\limits_{i=0}^{∞⁺} s_i ⇝ S$ 也即 $\lim\limits_{n⇝∞⁺} \left \sum\limits_{i=0}^n s_i - S \right ⇝ 0$

$\varliminf\limits_{n ⇝ ∞⁺} S_n = \lim\limits_{n ⇝ ∞⁺} S_n = \varlimsup\limits_{n ⇝ ∞⁺} S_n$

无穷级数发散

$\lim\limits_{n ⇝ ∞⁺} S_n \not⇝ S$ 也即 $\lim\limits_{n ⇝ ∞⁺} S_n - S \not⇝ 0$
$\sum\limits_{i=0}^{∞⁺} s_i \not⇝ S$ 也即 $\lim\limits_{n⇝∞⁺} \left \sum\limits_{i=0}^n s_i - S \right \not⇝ 0$

$\varliminf\limits_{n ⇝ ∞⁺} S_n ≠ \varlimsup\limits_{n ⇝ ∞⁺} S_n$

无穷级数收敛的性质

若无穷级数收敛,则其部分和的绝对值收敛。

$\lim\limits_{n⇝∞⁺} S_n ⇝ S ⇒ \lim\limits_{n⇝∞⁺} S_n S $
$[ ∀ε>0;∃N∈ℕ;∀n≥N; S_n - S < ε ] ⇒ [ ∀ε>0;∃N∈ℕ;∀n≥N;   S_n - S   S_n - S < ε]$

若无穷级数收敛,则其通项收敛于零。

$\lim\limits_{n ⇝ ∞⁺} S_n ⇝ S ⇒ \lim\limits_{i ⇝ ∞⁺} s_i ⇝ 0$

若通项不收敛于零,则无穷级数发散。

$\lim\limits_{i ⇝ ∞⁺} s_i \not⇝ 0 ⇒ \lim\limits_{n ⇝ ∞⁺} S_n \not⇝ S$

将无穷级数的有限多项改变,其敛散性不变。

$\sum\limits_{i = n}^{∞⁺} s_i ⇝ S ⇔ \sum\limits_{i = m}^{∞⁺} s_i ⇝ T$

若无穷级数收敛,再将通项保序归组,则其收敛性不变。

$\sum\limits_{i=0}^{∞⁺} s_i ⇝ S ⇒ \sum\limits_{i=0}^{∞⁺} (s_{i_0} + ⋯ + s_{i_j}) ⇝ S$

若无穷级数各组内的通项正负性相同,则其敛散性不变。

$\sum\limits_{i=0}^{∞⁺} s_i ⇝ S ⇔ \sum\limits_{i=0}^{∞⁺} (s_{i_0} + ⋯ + s_{i_j}) ⇝ S$

特例:无穷级数$\sum\limits_{i=0}^{∞⁺} (-1)^i \not⇝ S$。

$\lim\limits_{i ⇝ ∞⁺} S_{2 · i - 1} ⇝ -1, \lim\limits_{i ⇝ ∞⁺} S_{2 · i} ⇝ 0$

无穷级数的数列审敛法

若无穷级数收敛,则其部分和的极限之差为无穷小。

$[∀ε>0;∃N∈ℕ;∀n≥N; S_n - S < ε] ⇔ [∀ε>0;∃N∈ℕ;∀n≥N;∀m>N; S_m - S_n < ε]$
$[∀ε>0;∃N∈ℕ;∀n≥N; \left \sum\limits_{i=0}^n s_i - S \right < ε] ⇔ [∀ε>0;∃N∈ℕ;∀n≥N;∀m>n; \left \sum\limits_{i=n}^m s_i \right < ε]$
$[∀ε>0;∃N∈ℕ; n ≥ N ⇒ S_n - S < ε] ⇔ [∀ε>0;∃N∈ℕ; n ≥ N ∧ m > N ⇒ S_m - S_n < ε]$
$[∀ε>0;∃N∈ℕ; n ≥ N ⇒ \left \sum\limits_{i=0}^n s_i - S \right < ε] ⇔ [∀ε>0;∃N∈ℕ; n ≥ N ∧ m > n ⇒ \left \sum\limits_{i=n}^m s_i \right < ε]$

若无穷级数发散,则其部分和的极限之差非无穷小。

$[∃ε>0;∀N∈ℕ;∃n≥N; S_n - S ≥ ε] ⇔ [∃ε>0;∀N∈ℕ;∃n≥N;∃m>N; S_m - S_n ≥ ε]$
$[∃ε>0;∀N∈ℕ;∃n≥N; \left \sum\limits_{i=0}^n s_i - S \right ≥ ε] ⇔ [∃ε>0;∀N∈ℕ;∃n≥N;∃m>n; \left \sum\limits_{i=n}^m s_i \right ≥ ε$
$[∃ε>0;∀N∈ℕ; n ≥ N ∧ S_n - S ≥ ε] ⇔ [∃ε>0;∀N∈ℕ; n ≥ N ∧ m > N ∧ S_m - S_n ≥ ε]$
$[∃ε>0;∀N∈ℕ; n ≥ N ∧ \left \sum\limits_{i=0}^n s_i - S \right ≥ ε] ⇔ [∃ε>0;∀N∈ℕ; n ≥ N ∧ m > n ∧ \left \sum\limits_{i=n}^m s_i \right ≥ ε]$

必要性证明,根据三角不等关系式。

$⇓$ $∀ε_1>0;∃N∈ℕ;∀n≥N; \lvert S_n - S \rvert < ε_1] ∧ [∀ε_2>0;∃N∈ℕ;∀m>N; \lvert S_m - S \rvert < ε_2$
$⇓$ $∀ε=ε_1 + ε_2;∃N∈ℕ;∀n≥N;∀m>N; \lvert S_m - S_n \rvert ≤ \lvert S_m - S \rvert + \lvert S_n - S \rvert < ε_1 + ε_2 = ε$
$⇓$ $∀ε>0;∃N∈ℕ;∀n≥N;∀m>N; \lvert S_m - S_n \rvert < ε$

充分性证明,根据上下确界关系式。

$⇓$ $∀ε>0;∃N∈ℕ;∀n≥N;∀m>N; \lvert S_m - S_n \rvert < ε$
$⇓$ $∃S;∀ε=ε_1+ε_2;∃N∈ℕ;∀n≥N;∀m>N; S - ε_1 < S_m, S_n < S + ε_2$
$⇓$ $∀ε>0;∃N∈ℕ;∀n≥N;\lvert S_n - S \rvert < ε$

无穷级数的分部审敛法

错位加和公式。

$\sum\limits_{i=n}^m s_i · t_i \mathop{===}\limits^{S_{-1}≡0} \sum\limits_{i=n}^m (S_i - S_{i-1}) · t_i = S_m · t_m + \sum\limits_{i=n}^{m-1} S_i · t_i - \sum\limits_{i=n}^{m-1} S_i · t_{i+1} - S_{n-1} · t_n = (S_m · t_m - S_{n-1} · t_n) + \sum\limits_{i=n}^{m-1} S_i · (t_i - t_{i+1}) $

$\left \sum\limits_{i=n}^m s_i · t_i \right S_m · t_m + S_{n-1} · t_n + \left \sum\limits_{i=n}^{m-1} S_i · (t_i - t_{i+1}) \right S_m · t_m + S_{n-1} · t_n + \sum\limits_{i=n}^{m-1} S_i · t_i - t_{i+1} $
$⇓$     $[ ∃N∈ℕ;∀i>N; S_i ≤ \mathrm{Sup.} ∧ t_i ≥ t_{i+1} ] ⊕ [ ∃N∈ℕ;∀i>N; S_i ≤ \mathrm{Sup.} ∧ t_i ≤ t_{i+1} ]$                
$⇓$     $\left \sum\limits_{i=n}^m s_i · t_i \right ≤ \mathrm{Sup.} · \left[ t_m + t_n + \left \sum\limits_{i=n}^{m-1} (t_i - t_{i+1}) \right \right] ≤ \mathrm{Sup.} · 2 · \left[ t_m + t_n \right]$
$⇓$ $\varlimsup\limits_{i ⇝ ∞⁺} S_i ≤ \mathrm{Sup.} ∧ t_i ⪌ t_{i+1} ∧ \lim\limits_{i ⇝ ∞⁺} t_i ⇝ 0$ $⇒$ $∀ε>0;∃N∈ℕ;∀n≥N;∀m≥n; \left \sum\limits_{i=n}^m s_i · t_i \right < \mathrm{Sup.} · 2 · (ε_1 + ε_2) = ε$                
$⇓$ $\varlimsup\limits_{i ⇝ ∞⁺} S_i ≤ \mathrm{Sup.} ∧ t_i ⪌ t_{i+1} ∧ \lim\limits_{i ⇝ ∞⁺} t_i ⇝ 0$ $⇒$ $\sum\limits_{i=0}^{∞⁺} s_i · t_i ⇝ ST$                    
$⇓$ $\lim\limits_{i ⇝ ∞⁺} S_i ⇝ S ∧ t_i ⪌ t_{i+1} ∧ \lim\limits_{i ⇝ ∞⁺} t_i ⇝ t$ $\mathop{⇒}\limits_{\lim\limits_{i⇝∞⁺} (t_i - t) ⇝ 0}$ $\sum\limits_{i=0}^{∞⁺} s_i · t_i = t · \sum\limits_{i=0}^{∞⁺} s_i + \sum\limits_{i=0}^{∞⁺} [ s_i · (t_i - t) ] ⇝ ST$                        
$⇓$ $\lim\limits_{i ⇝ ∞⁺} S_i ⇝ S ∧ t_i ⪌ t_{i+1} ∧ \varlimsup\limits_{i⇝∞⁺} t_i ≤ \mathrm{Sup.}$ $\mathop{⇒}\limits_{\lim\limits_{i⇝∞⁺} t_i ⇝ t}$ $\sum\limits_{i=0}^{∞⁺} s_i · t_i ⇝ ST$                    

若部分和$\sum\limits_{i=0}^n s_i$有确界,且$t_i$单调趋于零,则无穷级数$\sum\limits_{i=0}^{∞⁺} s_i · t_i$收敛。

若无穷级数$\sum\limits_{i=0}^{∞⁺} s_i$收敛,且$t_i$单调有确界,则无穷级数$\sum\limits_{i=0}^{∞⁺} s_i · t_i$收敛。

特例:若$t_i$单调趋于零,则交错级数$\sum\limits_{i=0}^{∞⁺} (-1)^i · t_i$收敛。

无穷级数的绝对收敛与条件收敛

若无穷级数绝对收敛,则其本身必定收敛。

$\sum\limits_{i=0}^{∞⁺} s_i ⇝ S_{   } ⇒ \sum\limits_{i=0}^{∞⁺} s_i ⇝ S$
$\left[ ∀ε>0;∃N∈ℕ;∀n≥N;∀m>n; \left \sum\limits_{i=n}^m s_i \right < ε \right] ⇒ \left[ ∀ε>0;∃N∈ℕ;∀n≥N;∀m>n; \left \sum\limits_{i=n}^m s_i \right ≤ \left \sum\limits_{i=n}^{m} s_i \right < ε \right]$

若无穷级数本身收敛,则其未必绝对收敛。

$\sum\limits_{i=0}^{∞⁺} s_i ⇝ S \not⇒ \sum\limits_{i=0}^{∞⁺} s_i ⇝ S_{   }$
$\left[ ∀ε>0;∃N∈ℕ;∀n≥N;∀m>n; \left \sum\limits_{i=n}^m s_i \right < ε \right] \not⇒ \left[ ∀ε>0;∃N∈ℕ;∀n≥N;∀m>n; \left \sum\limits_{i=n}^m s_i \right < ε \right]$

无穷级数绝对收敛与条件收敛的性质

无穷级数的正数项$+s_i^+ ≡ +\dfrac{1}{2} · ( s_i + s_i)$,无穷级数的负数项$-s_i^- ≡ -\dfrac{1}{2} · ( s_i - s_i)$。
无穷级数的一般项$s_i = s_i^+ - s_i^-$,无穷级数的绝对项$ s_i = s_i^+ + s_i^-$。

若无穷级数绝对收敛,则其正数项级数与负数项级数均收敛,反之亦然。

$\sum\limits_{i=0}^{∞⁺} s_i = \sum\limits_{i=0}^{∞⁺} (s_i^+ + s_i^-) ⇝ S_{   } ⇔ \left[ \sum\limits_{i=0}^{∞⁺} s_i^+ ⇝ S_{+} \right] ∧ \left[ \sum\limits_{i=0}^{∞⁺} s^- ⇝ S_- \right]$

若无穷级数条件收敛,则其正数项级数与负数项级数均发散,反之不对。

$\sum\limits_{i=0}^{∞⁺} s_i = \sum\limits_{i=0}^{∞⁺} (s_i^+ - s_i^-) ⇝ S ⇒ \left[ \sum\limits_{i=0}^{∞⁺} s_i^+ \not⇝ S_+ \right] ∧ \left[ \sum\limits_{i=0}^{∞⁺} s_i^- \not⇝ S_- \right] ⇒ \left[ \sum\limits_{i=0}^{∞⁺} s_i^+ ⇝ ∞⁺ \right] ∧ \left[ \sum\limits_{i=0}^{∞⁺} s_i^- ⇝ ∞⁺ \right]$

$⇓$ $\sum\limits_{i=0}^{∞⁺} s_i ⇝ S_{   } ⇒ \sum\limits_{i=0}^{∞⁺} s_i^+ ⇝ S_+$ $⇐$ $0 ≤ s_i^+ ≤ s_i $    
$⇓$ $\sum\limits_{i=0}^{∞⁺} s_i ⇝ S_{   } ⇒ \sum\limits_{i=0}^{∞⁺} s^- ⇝ S_-$ $⇐$ $0 ≤ s_i^- ≤ s_i $    
$⇓$ $\sum\limits_{i=0}^{∞⁺} s_i ⇝ S_{   } ⇐ \sum\limits_{i=0}^{∞⁺} s_i^+ ⇝ S_+ ∧ \sum\limits_{i=0}^{∞⁺} s_i^- ⇝ S_-$ $⇐$ $\sum\limits_{i=0}^{∞⁺} s_i = \sum\limits_{i=0}^{∞⁺} s_i^+ + \sum\limits_{i=0}^{∞⁺} s_i^-$    
$⇓$ $\sum\limits_{i=0}^{∞⁺} s_i ⇝ S_{   } ⇔ \sum\limits_{i=0}^{∞⁺} s_i^+ ⇝ S_+ ∧ \sum\limits_{i=0}^{∞⁺} s_i^- ⇝ S_-$ $⇒$ $\sum\limits_{i=0}^{∞⁺} s_i \not⇝ S_{   } ⇒ \left[ \sum\limits_{i=0}^{∞⁺} s_i^+ \not⇝ S_+ ∨ \sum\limits_{i=0}^{∞⁺} s_i^- \not⇝ S_- \right]$
$⇓$ $\sum\limits_{i=0}^{∞⁺} s_i ⇝ S ⇒ \left[ \sum\limits_{i=0}^{∞⁺} s_i^+ ⇝ S_+ ∧ \sum\limits_{i=0}^{∞⁺} s_i^- ⇝ S_- \right] ⊕ \left[ \sum\limits_{i=0}^{∞⁺} s_i^+ \not⇝ S_+ ∧ \sum\limits_{i=0}^{∞⁺} s_i^- \not⇝ S_- \right]$ $⇐$ $\sum\limits_{i=0}^{∞⁺} s_i = \sum\limits_{i=0}^{∞⁺} s_i^+ - \sum\limits_{i=0}^{∞⁺} s_i^-$                
$⇓$ $\sum\limits_{i=0}^{∞⁺} s_i ⇝ S ∧ \sum\limits_{i=0}^{∞⁺} s_i \not⇝ S_{   } ⇒ \left[ \sum\limits_{i=0}^{∞⁺} s_i^+ \not⇝ S_+ ∧ \sum\limits_{i=0}^{∞⁺} s_i^- \not⇝ S_- \right]$            
$⇓$ $\sum\limits_{i=0}^{∞⁺} s_i ⇝ S ∧ \sum\limits_{i=0}^{∞⁺} s_i \not⇝ S_{   } ⇒ \left[ \sum\limits_{i=0}^{∞⁺} s_i^+ ⇝ ∞⁺ ∧ \sum\limits_{i=0}^{∞⁺} s_i^- ⇝ ∞⁺ \right]$ $⇐$ $0 ≤ s_i^+ ∧ 0 ≤ s_i^-$        

若无穷级数绝对收敛,则交换任意多项的次序,其极限不变并且保持绝对收敛。

若无穷级数条件收敛,则交换任意多项的次序,可使其趋近于任意给定的极限。

$⇓$   $\sum\limits_{i=0}^{∞⁺} s_i ⇝ S ⇒ \lim\limits_{i⇝∞⁺} s_i ⇝ 0$                
$⇓$   $\sum\limits_{i=0}^{∞⁺} s_i ⇝ S ∧ \sum\limits_{i=0}^{∞⁺} s_i \not⇝ S_{   } ⇒ \sum\limits_{i=0}^{∞⁺} s_i^+ ⇝ ∞⁺ ∧ \sum\limits_{i=0}^{∞⁺} s_i^- ⇝ ∞⁺$        
$⇓$ $∃n_0^+∈ℕ;∃n_0^-∈ℕ;∃n_0≤\max(n_0^+, n_0^-);$ $\left \left( \sum\limits_{j=0}^{n_0^+} s_j^+ - \sum\limits_{j=0}^{n_0^-} s_j^- \right) - T \right < s_{n_0} $        
$⇓$ $∃n_1^+∈ℕ;∃n_1^-∈ℕ;∃n_1≤\max(n_1^+, n_1^-);$ $\left \left( \sum\limits_{j=0}^{n_0^+} s_j^+ - \sum\limits_{j=0}^{n_0^-} s_j^- \right) + \left( \sum\limits_{j=n_0^+ + 1}^{n_1^+} s_j^+ - \sum\limits_{j=n_0^- + 1}^{n_1^-} s_j^- \right) - T \right < s_{n_1} < s_{n_0} $    
$⇓$ $···$ $···$                
$⇓$   $\left \left( \sum\limits_{j=0}^{n_0^+} s_j^+ - \sum\limits_{j=0}^{n_0^-} s_j^- \right) + \left( \sum\limits_{j=n_0^+ + 1}^{n_1^+} s_j^+ - \sum\limits_{j=n_0^- + 1}^{n_1^-} s_j^- \right) + ··· + \left( \sum\limits_{j=n_{m-1}^+ + 1}^{n_m^+} s_j^+ - \sum\limits_{j=n_{m-1}^- + 1}^{n_m^-} s_j^- \right) - T \right < ε = s_{n_m} < ··· < s_{n_1} < s_{n_0} $
$⇓$   $\left( \sum\limits_{j=0}^{∞⁺} s_j^+ - \sum\limits_{j=0}^{∞⁺} s_j^- \right) = \sum\limits_{j=0}^{∞⁺} s_j ⇝ T$                

特例:无穷级数$\sum\limits_{i=\rlap{≡}{0,}1}^{∞⁺} \dfrac{(-1)^i}{i} ⇝ S$条件收敛非绝对收敛,交换无穷多项的次序可使其值发生改变。

$\sum\limits_{i=\rlap{≡}{0,}1}^{∞⁺} s_i^+ = \sum\limits_{i=\rlap{≡}{0,}1}^{∞⁺} \dfrac{1}{2 · i} ⇝ ∞⁺, \sum\limits_{i=0}^{∞⁺} s_i^- = \sum\limits_{i=0}^{∞⁺} = \dfrac{1}{2 · i + 1} ⇝ ∞⁺$

新无穷级数$- \dfrac{1}{1} + \sum\limits_{i=1}^{∞⁺} \left( - \dfrac{1}{4 · i - 1} + \dfrac{1}{2 · i} - \dfrac{1}{4 · i + 1} \right) ⇝ \dfrac{3}{2} · S$,由原无穷级数$\sum\limits_{i=\rlap{≡}{0,}1}^{∞⁺} \dfrac{(-1)^i}{i} ⇝ S$,交换无穷多项的次序得到,两者并非等值。

$S = $ $- \dfrac{1}{1}$ $+ \dfrac{1}{2}$ $- \dfrac{1}{3}$ $+ \dfrac{1}{4}$ $- \dfrac{1}{5}$ $+ \dfrac{1}{6}$ $- \dfrac{1}{7}$ $+ \dfrac{1}{8}$ $- \dfrac{1}{9}$ $+ \dfrac{1}{10}$ $- \dfrac{1}{11}$ $+ \dfrac{1}{12}$ $- \dfrac{1}{13}$ $+ \dfrac{1}{14}$ $- \dfrac{1}{15}$ $+ \dfrac{1}{16}$ $- \dfrac{1}{17}$ $+ \dfrac{1}{18}$ $- \dfrac{1}{19}$ $+ \dfrac{1}{20}$ $-\dfrac{1}{21}$ $+ \dfrac{1}{22}$
$+) \dfrac{1}{2} · S = $   $- \dfrac{1}{2}$   $+ \dfrac{1}{4}$   $- \dfrac{1}{6}$   $+ \dfrac{1}{8}$   $- \dfrac{1}{10}$   $+ \dfrac{1}{12}$   $- \dfrac{1}{14}$   $+ \dfrac{1}{16}$   $- \dfrac{1}{18}$   $+ \dfrac{1}{20}$   $- \dfrac{1}{22}$
$\dfrac{3}{2} · S = $ $- \dfrac{1}{1}$   $- \dfrac{1}{3}$ $+ \dfrac{1}{2}$ $- \dfrac{1}{5}$   $- \dfrac{1}{7}$ $+ \dfrac{1}{4}$ $- \dfrac{1}{9}$   $- \dfrac{1}{11}$ $+ \dfrac{1}{6}$ $- \dfrac{1}{13}$   $- \dfrac{1}{15}$ $+ \dfrac{1}{8}$ $- \dfrac{1}{17}$   $- \dfrac{1}{19}$ $+ \dfrac{1}{10}$ $-\dfrac{1}{21}$  

正项级数收敛的性质

若正项级数收敛,则正项级数有上确界,反之亦然。

$\sum\limits_{i=0}^{∞⁺} s_i ⇝ S ⇔ \sum\limits_{i=0}^{∞⁺} s_i ≤ \mathrm{Sup.}$

若正项级数发散,则正项级数无上确界,反之亦然。

$\sum\limits_{i=0}^{∞⁺} s_i \not⇝ S ⇔ \sum\limits_{i=0}^{∞⁺} s_i \not≤ \mathrm{Sup.}$

正项级数的比较审敛法

$⇑$ $[ ∃N∈ℕ;∀i≥N; 0 ≤ s_i ≤ t_i ] ⇒ \left[ \sum\limits_{i=0}^{∞⁺} t_i ⇝ T ⇒ \sum\limits_{i=0}^{∞⁺} s_i ⇝ S \right]$   $[ ∃N∈ℕ;∀i≥N; s_i ≥ t_i ≥ 0 ] ⇒ \left[ \sum\limits_{i=0}^{∞⁺} t_i \not⇝ T ⇒ \sum\limits_{i=0}^{∞⁺} s_i \not⇝ S\right]$
$⇑$ $∃N∈ℕ;∀i≥N; \dfrac{s_i}{t_i} ≤ 1$ $⇒$ $\dfrac{s_i}{t_i} ≤ 1 + o (1)$
$⇑$ $∃N∈ℕ;∀i≥N; \dfrac{s_i}{t_i} = γ_i$ $⇒$ $γ_i = \dfrac{s_i}{t_i} + o (1)$
$⇑$ $\dfrac{s_i}{t_i} = γ_i ≤ 1$ $⇒$ $\sum\limits_{i=0}^{∞⁺} t_i ⇝ T ⇒ \sum\limits_{i=0}^{∞⁺} s_i ⇝ S$
$⇑$ $\dfrac{s_i}{t_i} =γ_i > 1$ $⇒$ $\sum\limits_{i=0}^{∞⁺} s_i \not⇝ S ⇒ \sum\limits_{i=0}^{∞⁺} t_i \not⇝ T$
$⇑$ $\varlimsup\limits_{i ⇝ ∞⁺} \dfrac{s_i}{t_i} = \varlimsup\limits_{i ⇝ ∞⁺} γ_i ⇝ γ < 1$ $⇒$ $\sum\limits_{i=0}^{∞⁺} t_i ⇝ T ⇒ \sum\limits_{i=0}^{∞⁺} s_i ⇝ S$
$⇑$ $\varlimsup\limits_{i ⇝ ∞⁺} \dfrac{s_i}{t_i} = \varlimsup\limits_{i ⇝ ∞⁺} γ_i ⇝ γ > 1$ $⇒$ $\sum\limits_{i=0}^{∞⁺} s_i \not⇝ S ⇒ \sum\limits_{i=0}^{∞⁺} t_i \not⇝ T$

特例:正项级数$\sum\limits_{i=0}^{∞⁺} f(α + i)$与广义积分$\int\limits_α^{∞⁺} f(x) \mathrm{d}x$的敛散性相同,$f(x)$为区间$[α, ∞⁺)$上非负单调递减的连续函数。

$\left[ \sum\limits_{i=0}^{∞⁺} f(α + i) ⇝ S \right] ⇔ \left[ \int\limits_α^{∞⁺} f(x) \mathrm{d}x ⇝ I \right]$

$⇓$ $\sum\limits_{i = 0}^{∞⁺} f(α + i + 1) = \sum\limits_{i = 0}^{∞⁺} \int\limits_{α + i}^{α + i + 1} f(α + i + 1) \mathrm{d}x ≤ \sum\limits_{i = 0}^{∞⁺} \int\limits_{α + i}^{α + i + 1} f(x) \mathrm{d}x ≤ \sum\limits_{i = 0}^{∞⁺} \int\limits_{α + i}^{α + i + 1} f(α + i) \mathrm{d}x = \sum\limits_{i = 0}^{∞⁺} f(α + i)$
$⇓$ $\sum\limits_{i=1}^{∞⁺} f(α + i) = \sum\limits_{i = 0}^{∞⁺} f(α + i + 1) ≤ \int\limits_α^{∞⁺} f(x) \mathrm{d}x ≤ \sum\limits_{i = 0}^{∞⁺} f(α + i)$

特例:正项级数$\sum\limits_{i=\rlap{≡≡}{0,1,}2}^{∞⁺} \dfrac{1}{i^α · \ln^β i · \ln^γ \ln i}$收敛,仅当$α > 1$,以及$α = 1, β > 1$,以及$α = 1, β = 1, γ > $1。

$⇓$ $f(x) ≡ \dfrac{1}{x^α · \ln^β x · \ln^γ \ln x}$ $⇒$ $x_1 > x_2 ⇒ f(x_1) > f(x_2)$
$⇓$ $s_i = \dfrac{1}{i^α · \ln^β i · \ln^γ \ln i} = \dfrac{1}{i^{1 + ε_1} } · \dfrac{1}{i^{ε_2} · \ln^β i · \ln^γ \ln i}$ $⇐$ $α > 1 ⇒ α ≡ 1 + ε_1 + ε_2$
$⇓$ $α > 1 ⇒ s_i < \dfrac{1}{i^{1 + ε_1} }$ $⇐$ $\lim\limits_{i ⇝ ∞⁺} \dfrac{1}{i^{ε_2} · \ln^β i · \ln^γ \ln i} ⇝ 0$
$⇓$ $α > 1 ⇒ \sum\limits_{i=2}^{∞⁺} s_i ⇝ S$ $⇐$ $\int\limits_{i=2}^{∞⁺} \dfrac{1}{i^{1 + ε_1} } \mathrm{d}i ⇝ I$
$⇓$ $s_i = \dfrac{1}{i^α · \ln^β i · \ln^γ \ln i} = \dfrac{1}{i^{1 - ε_1} } · \dfrac{i^{ ε_2} }{\ln^β i · \ln^γ \ln i}$ $⇐$ $α < 1 ⇒ α ≡ 1 - ε_1 - ε_2$
$⇓$ $α < 1 ⇒ s_i > \dfrac{1}{i^{1 - ε_1} }$ $⇐$ $\lim\limits_{i ⇝ ∞⁺} \dfrac{i^{ε_2} }{\ln^β i · \ln^γ \ln i} ⇝ ∞⁺$
$⇓$ $α < 1 ⇒ \sum\limits_{i=2}^{∞⁺} s_i \not⇝ S$ $⇐$ $\int\limits_{i=2}^{∞⁺} \dfrac{1}{i^{1 - ε_1} } \mathrm{d}i \not⇝ I$
$⇓$ $α = 1 ⇒ \int\limits_{2}^{∞⁺} s_i \mathrm{d}i = \int\limits_{\ln 2}^{∞⁺} \dfrac{\mathrm{d}u}{u^β · \ln^γ u}$ $⇐$ $u ≡ \ln i ⇒ \dfrac{\mathrm{d}i}{i} = \mathrm{d}u$
$⇓$ $α = 1, β > 1 ⇒ \sum\limits_{i=2}^{∞⁺} s_i ⇝ S$ $⇐$ $β > 1 ⇒ \int\limits_{\ln 2}^{∞⁺} \dfrac{\mathrm{d}u}{u^β · \ln^γ u} ⇝ I$
$⇓$ $α = 1, β < 1 ⇒ \sum\limits_{i=2}^{∞⁺} s_i \not⇝ S$ $⇐$ $β < 1 ⇒ \int\limits_{\ln 2}^{∞⁺} \dfrac{\mathrm{d}u}{u^β · \ln^γ u} \not⇝ I$

附加证明:$\lim\limits_{i ⇝ ∞⁺} \dfrac{i^{ε_2} }{\ln^β i · \ln^γ \ln i} ⇝ ∞⁺$

$\lim\limits_{i⇝∞⁺} \dfrac{i^{ε_2} }{\ln^β i · \ln^γ \ln i} = \left[ \lim\limits_{i⇝∞⁺} \dfrac{i^{\frac{ε_2}{2·β} } }{\ln i} \right]^{β} · \left[ \lim\limits_{i⇝∞⁺} \dfrac{i^{\frac{ε_2}{2·γ} } }{\ln \ln i} \right]^{γ} = \left[ \lim\limits_{i⇝∞⁺} \dfrac{ε_2}{2·β} · i^{\frac{ε_2}{2·β} - 1 + 1} \right]^{β} · \left[ \lim\limits_{i⇝∞⁺} \dfrac{ε_2}{2·γ} · i^{\frac{ε_2}{2·γ}-1+1} · \ln i \right]^{γ} ⇝ ∞⁺$

正项级数的比值审敛法

$⇑$ $\left[ ∃N∈ℕ;∀i≥N; s_i ≤ \dfrac{\mathrm{Sup.} }{γ^i} \right] ⇒ \left[ γ > 1 ⇒ \sum\limits_{i=0}^{∞⁺} s_i ⇝ S \right]$   $\left[ ∃N∈ℕ;∀i≥N; s_i ≥ \dfrac{\mathrm{Sup.} }{γ^i} \right] ⇒ \left[ 0 < γ < 1 ⇒ \sum\limits_{i=0}^{∞⁺} s_i \not⇝ S \right]$
$⇑$ $∃N∈ℕ;∀i≥N; s_{i+1} · γ^{i + 1} ≤ s_i · γ^i ≤ \mathrm{Sup.}$ $⇒$ $\dfrac{s_i}{s_{i+1} } ≤ γ + o(1)$
$⇑$ $∃N∈ℕ;∀i≥N; \dfrac{s_i}{s_{i+1} } = γ_i + o (1)$ $⇒$ $γ_i = \dfrac{s_i}{s_{i+1} } + o (1)$
$⇑$ $\dfrac{s_i}{s_{i+1} } = γ_i ≥ γ > 1$ $⇒$ $\sum\limits_{i=0}^{∞⁺} s_i ⇝ S$
$⇑$ $\dfrac{s_i}{s_{i+1} } = γ_i ≤ 1$ $⇒$ $\sum\limits_{i=0}^{∞⁺} s_i \not⇝ S$
$⇑$ $\varliminf\limits_{i ⇝ ∞⁺} \dfrac{s_i}{s_{i+1} } = \varliminf\limits_{i ⇝ ∞⁺} γ_i ⇝ γ > 1$ $⇒$ $\sum\limits_{i=0}^{∞⁺} s_i ⇝ S$
$⇑$ $\varlimsup\limits_{i ⇝ ∞⁺} \dfrac{s_i}{s_{i+1} } = \varlimsup\limits_{i ⇝ ∞⁺} γ_i ⇝ γ < 1$ $⇒$ $\sum\limits_{i=0}^{∞⁺} s_i \not⇝ S$

特例:正项级数$\sum\limits_{i=\rlap{≡}{0,}1}^{∞⁺} \dfrac{1}{i} \not⇝ S$,正项级数$\sum\limits_{i=\rlap{≡}{0,}1}^{∞⁺} \dfrac{1}{i^2} ⇝ S$。

$\lim\limits_{i ⇝ ∞⁺} γ_i = \lim\limits_{i ⇝ ∞⁺} \dfrac{i + 1}{i} ⇝ 1$

$\lim\limits_{i ⇝ ∞⁺} γ_i = \lim\limits_{i ⇝ ∞⁺} \dfrac{i^2}{(i + 1)^2} = \left[ \lim\limits_{i ⇝ ∞⁺} \dfrac{i}{i + 1} \right]^2 ⇝ 1$

正项级数的根值审敛法

$⇑$ $\left[ ∃N∈ℕ;∀i≥N; s_i ≤ \dfrac{\mathrm{Sup.} }{γ^i} \right] ⇒ \left[ γ > 1 ⇒ \sum\limits_{i=0}^{∞⁺} s_i ⇝ S \right]$   $\left[ ∃N∈ℕ;∀i≥N; s_i ≥ \dfrac{\mathrm{Sup.} }{γ^i} \right] ⇒ \left[ 0 < γ < 1 ⇒ \sum\limits_{i=0}^{∞⁺} s_i \not⇝ S \right]$
$⇑$ $∃N∈ℕ;∀i≥N; \sqrt[i + 1]{s_{i+1} } · γ ≤ \sqrt[i]{s_i} · γ ≤ \sqrt[N]{\mathrm{Sup.} } ⇝ 1$ $⇒$ $\sqrt[i]{s_i} ≤ \dfrac{1}{γ} + o \left( \dfrac{1}{γ} \right)$
$⇑$ $∃N∈ℕ;∀i≥N; \sqrt[i]{s_i} = \dfrac{1}{γ_i} + o \left( \dfrac{1}{γ_i} \right)$ $⇒$ $γ_i = \dfrac{1}{\sqrt[i]{s_i} } + o (1)$
$⇑$ $\dfrac{1}{\sqrt[i]{s_i} } = γ_i ≥ γ > 1$ $⇒$ $\sum\limits_{i=0}^{∞⁺} s_i ⇝ S$
$⇑$ $\dfrac{1}{\sqrt[i]{s_i} } = γ_i ≤ 1$ $⇒$ $\sum\limits_{i=0}^{∞⁺} s_i \not⇝ S$
$⇑$ $\varliminf\limits_{i ⇝ ∞⁺} \dfrac{1}{\sqrt[i]{s_i} } = \varliminf\limits_{i ⇝ ∞⁺} γ_i ⇝ γ > 1$ $⇒$ $\sum\limits_{i=0}^{∞⁺} s_i ⇝ S$
$⇑$ $\varlimsup\limits_{i ⇝ ∞⁺} \dfrac{1}{\sqrt[i]{s_i} } = \varlimsup\limits_{i ⇝ ∞⁺} γ_i ⇝ γ < 1$ $⇒$ $\sum\limits_{i=0}^{∞⁺} s_i \not⇝ S$

特例:正项级数$\sum\limits_{i = 1}^{∞⁺} \dfrac{1}{i} \not⇝ S$,正项级数$\sum\limits_{i = 1}^{∞⁺} \dfrac{1}{i^2} ⇝ S$。

$\lim\limits_{i ⇝ ∞⁺} γ_i = \lim\limits_{i ⇝ ∞⁺} \sqrt[i]{i} ⇝ 1$

$\lim\limits_{i ⇝ ∞⁺} γ_i = \lim\limits_{i ⇝ ∞⁺} \sqrt[i]{i^2} = \left[ \lim\limits_{i ⇝ ∞⁺} \sqrt[i]{i} \right]^2 ⇝ 1$

正项级数的幂值审敛法

$⇑$ $\left[ ∃N∈ℕ;∀i≥N; s_i ≤ \dfrac{\mathrm{Sup.} }{i^α} \right] ⇒ \left[ α > 1 ⇒ \sum\limits_{i=\rlap{≡}{0,}1}^{∞⁺} s_i ⇝ S \right]$   $\left[ ∃N∈ℕ;∀i≥N; s_i ≥ \dfrac{\mathrm{Sup.} }{i^α} \right] ⇒ \left[ α < 1 ⇒ \sum\limits_{i=\rlap{≡}{0,}1}^{∞⁺} s_i \not⇝ S \right]$
$⇑$ $∃N∈ℕ;∀i≥N; s_{i+1} · (i + 1)^α ≤ s_i · i^α ≤ \mathrm{Sup.}$ $⇒$ $\dfrac{s_i}{s_{i+1} } ≥ \dfrac{(i + 1)^α}{i^α} = 1 + \dfrac{α}{i} + o \left( \dfrac{1}{i} \right)$
$⇑$ $∃N∈ℕ;∀i≥N; \dfrac{s_i}{s_{i + 1} } = 1 + \dfrac{α_i}{i} + o \left( \dfrac{1}{i} \right)$ $⇒$ $α_i = i · \left( \dfrac{s_i}{s_{i+1} } - 1 \right) + o (1)$
$⇑$ $i · \left( \dfrac{s_i}{s_{i+1} } - 1 \right) = α_i ≥ α > 1$ $⇒$ $\sum\limits_{i=\rlap{≡}{0,}1}^{∞⁺} s_i ⇝ S$
$⇑$ $i · \left( \dfrac{s_i}{s_{i+1} } - 1 \right) = α_i ≤ 1$ $⇒$ $\sum\limits_{i=\rlap{≡}{0,}1}^{∞⁺} s_i \not⇝ S$
$⇑$ $\varliminf\limits_{i ⇝ ∞⁺} i · \left( \dfrac{s_i}{s_{i+1} } - 1 \right) = \varliminf\limits_{i ⇝ ∞⁺} α_i ⇝ α > 1$ $⇒$ $\sum\limits_{i=\rlap{≡}{0,}1}^{∞⁺} s_i ⇝ S$
$⇑$ $\varlimsup\limits_{i ⇝ ∞⁺} i · \left( \dfrac{s_i}{s_{i+1} } - 1 \right) = \varlimsup\limits_{i ⇝ ∞⁺} α_i ⇝ α < 1$ $⇒$ $\sum\limits_{i=\rlap{≡}{0,}1}^{∞⁺} s_i \not⇝ S$

特例:正项级数$\sum\limits_{i=\rlap{≡≡}{0,1,}2}^{∞⁺} \dfrac{1}{i} \not⇝ S$,正项级数$\sum\limits_{i=\rlap{≡≡}{0,1,}2}^{∞⁺} \dfrac{1}{i · \ln^2 i} ⇝ S$。

$\lim\limits_{i ⇝ ∞⁺} α_i = \lim\limits_{i ⇝ ∞⁺} i · \left( \dfrac{i + 1}{i} - 1 \right) = \lim\limits_{i ⇝ ∞⁺} 1 ⇝ 1$

$\lim\limits_{i ⇝ ∞⁺} α_i = \lim\limits_{i ⇝ ∞⁺} i · \left[ \dfrac{(i + 1) · \ln^2 (i + 1)}{i · \ln^2 i} - 1 \right] = \lim\limits_{i ⇝ ∞⁺} \left[ (i + 1) · \left[ \lim\limits_{i ⇝ ∞⁺} \dfrac{\ln (i + 1)}{\ln i} \right]^2 - i \right] = \lim\limits_{i ⇝ ∞⁺} 1 ⇝ 1$

正项级数的指数审敛法

$⇑$ $\left[ ∃N∈ℕ;∀i≥N; s_i ≤ \dfrac{\mathrm{Sup.} }{i^α} \right] ⇒ \left[ α > 1 ⇒ \sum\limits_{i=\rlap{≡}{0,}1}^{∞⁺} s_i ⇝ S \right]$   $\left[ ∃N∈ℕ;∀i≥N; s_i ≥ \dfrac{\mathrm{Sup.} }{i^α} \right] ⇒ \left[ α < 1 ⇒ \sum\limits_{i=\rlap{≡}{0,}1}^{∞⁺} s_i \not⇝ S \right]$
$⇑$ $∃N∈ℕ;∀i≥N; s_{i+1} · (i + 1)^α ≤ s_i · i^α ≤ \mathrm{Sup.}$ $⇒$ $α ≤ \dfrac{\ln \mathrm{Sup.} - \ln s_i}{\ln i} = \dfrac{\ln s_i^{-1} }{\ln i} + o (1)$
$⇑$ $∃N∈ℕ;∀i≥N; α_i = \dfrac{\ln s_i^{-1} }{\ln i} + o (1)$ $⇒$ $s_i · i^{α + o (1)} ≤ 1$
$⇑$ $\dfrac{\ln s_i^{-1} }{\ln i} = α_i ≥ α > 1$ $⇒$ $\sum\limits_{i=\rlap{≡}{0,}1}^{∞⁺} s_i ⇝ S$
$⇑$ $\dfrac{\ln s_i^{-1} }{\ln i} = α_i ≤ 1$ $⇒$ $\sum\limits_{i=\rlap{≡}{0,}1}^{∞⁺} s_i \not⇝ S$
$⇑$ $\varliminf\limits_{i ⇝ ∞⁺} \dfrac{\ln s_i^{-1} }{\ln i} = \varliminf\limits_{i ⇝ ∞⁺} α_i ⇝ α > 1$ $⇒$ $\sum\limits_{i=\rlap{≡}{0,}1}^{∞⁺} s_i ⇝ S$
$⇑$ $\varlimsup\limits_{i ⇝ ∞⁺} \dfrac{\ln s_i^{-1} }{\ln i} = \varlimsup\limits_{i ⇝ ∞⁺} α_i ⇝ α < 1$ $⇒$ $\sum\limits_{i=\rlap{≡}{0,}1}^{∞⁺} s_i \not⇝ S$
$⇑$ $\varlimsup\limits_{i ⇝ ∞⁺} s_i · i^α ⇝ \mathrm{Sup.} < ∞⁺$ $⇒$ $α > 1 ⇒ \sum\limits_{i=\rlap{≡}{0,}1}^{∞⁺} s_i ⇝ S$
$⇑$ $\varliminf\limits_{i ⇝ ∞⁺} s_i · i^α ⇝ \mathrm{Inf.} > 0$ $⇒$ $α ≤ 1 ⇒ \sum\limits_{i=\rlap{≡}{0,}1}^{∞⁺} s_i \not⇝ S$

特例:正项级数$\sum\limits_{i=\rlap{≡≡}{0,1,}2}^{∞⁺} \dfrac{1}{i} \not⇝ S$,正项级数$\sum\limits_{i=\rlap{≡≡}{0,1,}2}^{∞⁺} \dfrac{1}{i · \ln^2 i} ⇝ S$。

$\lim\limits_{i ⇝ ∞⁺} α_i = \lim\limits_{i ⇝ ∞⁺} \dfrac{\ln i}{\ln i} = \lim\limits_{i ⇝ ∞⁺} 1 ⇝ 1$

$\lim\limits_{i ⇝ ∞⁺} α_i = \lim\limits_{i ⇝ ∞⁺} \dfrac{\ln \left( i · \ln^2 i \right)}{\ln i} = \lim\limits_{i ⇝ ∞⁺} \dfrac{\frac{1}{i · \ln i} · \left( \ln^2 i + i · 2 · \ln i · \frac{1}{i} \right)}{\frac{1}{i} } = \lim\limits_{i ⇝ ∞⁺} \left( 1 + \dfrac{2}{\ln i} \right) ⇝ 1$

$\lim\limits_{i ⇝ ∞⁺} s_i · i^1 = \lim\limits_{i ⇝ ∞⁺} \dfrac{1}{i} · i = \lim\limits_{i ⇝ ∞⁺} 1 ⇝ 1$

正项级数的对数审敛法

$⇑$ $\left[ ∃N∈ℕ;∀i≥N; s_i ≤ \dfrac{\mathrm{Sup.} }{i · \ln^β i} \right] ⇒ \left[ β > 1 ⇒ \sum\limits_{i=\rlap{≡≡}{0,1,}2}^{∞⁺} s_i ⇝ S \right]$ $⇒$ $\left[ ∃N∈ℕ;∀i≥N; s_i ≥ \dfrac{\mathrm{Sup.} }{i · \ln^β i} \right] ⇒ \left[ β < 1 ⇒ \sum\limits_{i=\rlap{≡≡}{0,1,}2}^{∞⁺} s_i \not⇝ S \right]$
$⇑$ $∃N∈ℕ;∀i>N; s_{i+1} · (i+1) · \ln^β (i+1) ≤ s_i · i · \ln^β i ≤ \mathrm{Sup.}$ $⇒$ $\dfrac{s_i}{s_{i+1} } ≥ \dfrac{i + 1}{i} · \dfrac{\ln^β (i + 1)}{\ln^β i} = 1 + \dfrac{1}{i} + \dfrac{β}{i · \ln i} + o \left( \dfrac{1}{i · \ln i} \right)$
$⇑$ $∃N∈ℕ;∀i>N; \dfrac{s_i}{s_{i+1} } = 1 + \dfrac{1}{i} + \dfrac{β_i}{i · \ln i} + o \left( \dfrac{1}{i · \ln i} \right)$ $⇒$ $β_i = i · \ln i · \left( \dfrac{s_i}{s_{i+1} } - \dfrac{i + 1}{i} \right) + o (1)$
$⇑$ $i · \ln i · \left( \dfrac{s_i}{s_{i+1} } - \dfrac{i + 1}{i} \right) = β_i ≥ β > 1$ $⇒$ $\sum\limits_{i=\rlap{≡≡}{0,1,}2}^{∞⁺} s_i ⇝ S$
$⇑$ $i · \ln i · \left( \dfrac{s_i}{s_{i+1} } - \dfrac{i + 1}{i} \right) = β_i ≤ 1$ $⇒$ $\sum\limits_{i=\rlap{≡≡}{0,1,}2}^{∞⁺} s_i \not⇝ S$
$⇑$ $\varliminf\limits_{i ⇝ ∞⁺} i · \ln i · \left( \dfrac{s_i}{s_{i+1} } - \dfrac{i + 1}{i} \right) = \varliminf\limits_{i ⇝ ∞⁺}β_i ⇝ β > 1$ $⇒$ $\sum\limits_{i=\rlap{≡≡}{0,1,}2}^{∞⁺} s_i ⇝ S$
$⇑$ $\varlimsup\limits_{i ⇝ ∞⁺} i · \ln i · \left( \dfrac{s_i}{s_{i+1} } - \dfrac{i + 1}{i} \right) = \varlimsup\limits_{i ⇝ ∞⁺} β_i ⇝ β < 1$ $⇒$ $\sum\limits_{i=\rlap{≡≡}{0,1,}2}^{∞⁺} s_i \not⇝ S$

附加证明:

$\dfrac{i + 1}{i} · \dfrac{\ln^β (i + 1)}{\ln^β i} = \left( 1 + \dfrac{1}{i} \right) · \left[ \dfrac{\ln i + \ln \left( 1 + \dfrac{1}{i} \right)}{\ln i} \right]^β = \left( 1 + \dfrac{1}{i} \right) · \left[ 1 + \dfrac{1}{i · \ln i} + o \left( \dfrac{1}{i · \ln i} \right) \right]^β = \left( 1 + \dfrac{1}{i} \right) · \left[ 1 + \dfrac{β}{i · \ln i} + o \left( \dfrac{1}{i · \ln i} \right) \right] = 1 + \dfrac{1}{i} + \dfrac{β}{i · \ln i} + o \left( \dfrac{1}{i · \ln i} \right)$

特例:正项级数$\sum\limits_{i=\rlap{≡≡}{0,1,}2}^{∞⁺} \dfrac{1}{i · \ln i} \not⇝ S$,正项级数$\sum\limits_{i=\rlap{≡≡}{0,1,}{2} }^{∞⁺} \dfrac{1}{i · \ln i · \ln^2 \ln i} ⇝ S$。

$\lim\limits_{i ⇝ ∞⁺} β_i = \lim\limits_{i ⇝ ∞⁺} i · \ln i · \left[ \dfrac{(i + 1) · \ln (i + 1)}{i · \ln i} - \dfrac{i + 1}{i} \right] = \lim\limits_{i ⇝ ∞⁺} \left[ (i + 1) · \ln (i + 1) - (i + 1) · \ln i \right] = \lim\limits_{i ⇝ ∞⁺} \left[ \ln \left( 1 + \dfrac{1}{i} \right)^i + \ln \left( 1 + \dfrac{1}{i} \right) \right] ⇝ 1$

$\lim\limits_{i ⇝ ∞⁺} β_i = \lim\limits_{i ⇝ ∞⁺} i · \ln i · \left[ \dfrac{(i + 1) · \ln (i + 1) · \ln^2 \ln (i + 1)}{i · \ln i · \ln^2 \ln i} - \dfrac{i + 1}{i} \right] = \lim\limits_{i ⇝ ∞⁺} \left[ (i + 1) · \ln (i + 1) · \left[ \lim\limits_{i ⇝ ∞⁺} \dfrac{\ln \ln (i + 1)}{\ln \ln i} \right]^2 - (i + 1) · \ln i \right] = \lim\limits_{i ⇝ ∞⁺} \left[ \ln \left( 1 + \dfrac{1}{i} \right)^i + \ln \left( 1 + \dfrac{1}{i} \right) \right] ⇝ 1$

正项级数的审敛法对比

收敛速度:比值审敛法 > 根值审敛法 > 幂值审敛法 > 指数审敛法 > 对数审敛法 > 比较审敛法

强效程度:比值审敛法 < 根值审敛法 < 幂值审敛法 < 指数审敛法 < 对数审敛法 < 比较审敛法

由于$\left[ 1 < \varliminf\limits_{i ⇝ ∞⁺} \dfrac{s_i}{s_{i+1} } ≤ \varliminf\limits_{i ⇝ ∞⁺} {\dfrac{1}{\sqrt[i]{s_i} } } \right] ≤ \varlimsup\limits_{i ⇝ ∞⁺} \dfrac{1}{\sqrt[i]{s_i} } ≤ \varlimsup\limits_{i ⇝ ∞⁺} \dfrac{s_i}{s_{i+1} }$

也即$\varliminf\limits_{i ⇝ ∞⁺} \dfrac{s_{i+1} }{s_i} ≤ \varliminf\limits_{i ⇝ ∞⁺} \sqrt[i]{s_i} ≤ \left[ \varlimsup\limits_{i ⇝ ∞⁺} \sqrt[i]{s_i} ≤ \varlimsup\limits_{i ⇝ ∞⁺} \dfrac{s_{i+1} }{s_i} < 1 \right]$​

$⇓$ $\varlimsup\limits_{i ⇝ ∞⁺} \dfrac{s_{i+1} }{s_i} ⇝ ρ$ $⇒$ $∀ε>0;∃N∈ℕ;∀n≥N; \dfrac{s_{i+1} }{s_i} < ρ + ε$
$⇓$ $\dfrac{s_i}{s_N} = \dfrac{s_i}{s_{i-1} } ··· \dfrac{s_{N-1} }{s_N} < (ρ + ε)^{i - N}$ $⇒$ $s_i < s_N · (ρ + ε)^{-N} · (ρ + ε)^i$
$⇓$ $\sqrt[i]{s_i} < \sqrt[i]{s_N · (ρ + ε)^{-N} } · (ρ + ε)$ $⇒$ $\varlimsup\limits_{i ⇝ ∞⁺} \sqrt[i]{s_i} ≤ \varlimsup\limits_{i ⇝ ∞⁺} \left[ \sqrt[i]{s_N · (ρ + ε)^{-N} } · (ρ + ε) \right] ⇝ ρ + ε$
$⇓$ $ε ⇝ 0⁺$ $⇒$ $\varlimsup\limits_{i ⇝ ∞⁺} \sqrt[i]{s_i} ≤ \varlimsup\limits_{i ⇝ ∞⁺} \dfrac{s_{i+1} }{s_i} ⇝ ρ$
$⇓$     $\varliminf\limits_{i ⇝ ∞⁺} \dfrac{s_i}{s_{i+1} } ≤ \varliminf\limits_{i ⇝ ∞⁺} {\dfrac{1}{\sqrt[i]{s_i} } }$

特例:正项级数$\sum\limits_{i=0 \ j=2·i,2·i+1}^{∞⁺} \left( \dfrac{1}{2^{2 · i} } + \dfrac{1}{3^{2 · i + 1} } \right) = \sum\limits_{i=0}^{∞⁺} \dfrac{1}{2^{2 · i} } + \dfrac{1}{3} · \sum\limits_{i=0}^{∞⁺} \dfrac{1}{3^{2 · i} } = \dfrac{1}{1 - \frac{1}{2^2} } + \dfrac{1}{3} · \dfrac{1}{1 - \frac{1}{3^2} } = \dfrac{41}{24}$

根据比值审敛法不可判定敛散性,但根据根值审敛法可判定为收敛。

$\varliminf\limits_{j⇝∞⁺} \dfrac{s_j}{s_{j+1} } = \min\left\lbrace \lim\limits_{i⇝∞⁺} \dfrac{1/2^{2·i} }{1/3^{2·i+1} }, \lim\limits_{i⇝∞⁺} \dfrac{1/3^{2·i+1} }{1/2^{2·i+2} } \right\rbrace = \lim\limits_{i⇝∞⁺} \dfrac{2^{2·i+2} } {3^{2·i+1} } ⇝ 0 < 1$

$\varlimsup\limits_{j⇝∞⁺} \dfrac{s_j}{s_{j+1} } = \max\left\lbrace \lim\limits_{i⇝∞⁺} \dfrac{1/2^{2·i} }{1/3^{2·i+1} }, \lim\limits_{i⇝∞⁺} \dfrac{1/3^{2·i+1} }{1/2^{2·i+2} } \right\rbrace = \lim\limits_{i⇝∞⁺} \dfrac{3^{2·i+1} }{2^{2·i} } ⇝ ∞⁺ > 1$

$\varliminf\limits_{j⇝∞⁺} \dfrac{1}{\sqrt[j]{s_j} } = \min\left\lbrace \lim\limits_{i⇝∞⁺} \sqrt[2·i]{2^{2·i} }, \lim\limits_{i⇝∞⁺} \sqrt[2·i+1]{3^{2·i+1} } \right\rbrace = \lim\limits_{i⇝∞⁺} \sqrt[2·i]{2^{2·i} } = 2 > 1$

$\varliminf\limits_{j⇝∞⁺} \dfrac{1}{\sqrt[j]{s_j} } = \max\left\lbrace \lim\limits_{i⇝∞⁺} \sqrt[2·i]{2^{2·i} }, \lim\limits_{i⇝∞⁺} \sqrt[2·i+1]{3^{2·i+1} } \right\rbrace = \lim\limits_{i⇝∞⁺} \sqrt[2·i+1]{3^{2·i+1} } = 3 > 1$

构造性收敛正项级数

不存在收敛最慢的正项级数。

假设存在正项级数$\sum\limits_{i=0}^{∞⁺} s_i ⇝ S$,则可构造收敛更慢的正项级数$t_i ≡ \sqrt{S - S_{i-1} } - \sqrt{S - S_i}$,使得$\sum\limits_{i=0}^{∞⁺} t_i ⇝ \sqrt{S}$。

$⇓$ $\sum\limits_{i=0}^{∞⁺} s_i ⇝ S$ $\mathop{⇒}\limits^{S_{-1}≡0}$ $s_i = S_i - S_{i-1} = (S - S_{i-1}) - (S - S_i)$
$⇓$ $1 = \dfrac{s_i}{(S - S_{i-1}) - (S - S_i)} = \dfrac{s_i}{(\sqrt{S - S_{i-1} } + \sqrt{S - S_i}) · (\sqrt{S - S_{i-1} } - \sqrt{S - S_i})}$ $⇒$ $t_i ≡ \sqrt{S - S_{i-1} } - \sqrt{S - S_i}, \sum\limits_{i=1}^{∞⁺} t_i ⇝ \sqrt{S - S_{-1} } = \sqrt{S}$
$⇓$ $\dfrac{s_i}{t_i} = \sqrt{S - S_{i-1} } + \sqrt{S - S_i}$ $⇒$ $\lim\limits_{i ⇝ ∞⁺} \dfrac{s_i}{t_i} ⇝ 0$

无穷级数的乘积

级数的乘积可类比于矩阵的乘法运算。

$\sum\limits_{i=0}^n s_i · \sum\limits_{j=0}^m t_j = \sum\limits_{i=0,j=0}^{n,m}\left[\begin{matrix} s_0 \ s_1 \ \vdots \ s_n \end{matrix}\right] · \left[\begin{matrix} t_0 & t_1 & \cdots & t_m \end{matrix}\right] = \sum\limits_{i=0,j=0}^{n,m}\left[\begin{matrix} s_0 · t_0 & s_0 · t_1 & \cdots & s_0 · t_m
s_1 · t_0 & s_1 · t_1 & \cdots & s_1 · t_m
\vdots & \vdots & \ddots & \vdots
s_n · t_0 & s_n · t_1 & \cdots & s_n · t_m
\end{matrix}\right]$

级数的乘积沿左上正方形对角线相加。

$\sum\limits_{i=0}^{∞⁺} s_i · \sum\limits_{j=0}^{∞⁺} t_j = \sum\limits_{l=0}^{∞⁺} \left[ \sum\limits_{k=0}^l s_k · t_{l-k} \right] = \sum\limits_{l=0}^{∞⁺} \left[ \sum\limits_{i+j=l} s_i · t_j \right] = (s_0 · t_0) + (s_0 · t_1 + s_1 · t_0) + \cdots + (s_0 · t_l + s_1 · t_{l-1} + \cdots + s_{l-1} · t_1 + s_l · t_0) + \cdots$

级数的乘积按左上三角形体横向相加。

$\sum\limits_{i=0}^{∞⁺} s_i · \sum\limits_{j=0}^{∞⁺} t_j = \lim\limits_{l⇝∞⁺} \sum\limits_{i=0}^l \left[ s_i · \sum\limits_{j=0}^{l-i} t_j \right] = \lim\limits_{l⇝∞⁺} \sum\limits_{i=0}^l s_i · T_{l-i} = \lim\limits_{l⇝∞⁺} [ s_0 · (t_0 + t_1 + ··· + t_l) + s_1 · (t_0 + t_1 + ··· + t_{l-1}) + ··· + s_{l-1} · (t_0 + t_1) + s_l · (t_0) ]$

级数的乘积按左上三角形体竖向相加。

$\sum\limits_{i=0}^{∞⁺} s_i · \sum\limits_{j=0}^{∞⁺} t_j = \lim\limits_{l⇝∞⁺} \sum\limits_{j=0}^l \left[ t_j · \sum\limits_{i=0}^{l-j} s_i \right] = \lim\limits_{l⇝∞⁺} \sum\limits_{j=0}^l t_j · S_{l-j} = \lim\limits_{l⇝∞⁺} [ t_0 · (s_0 + s_1 + ··· s_l) + t_1 · (s_0 + s_1 + ··· + s_{l-1}) + ··· + t_{l-1} · (s_0 + s_1) + t_l · (s_0) ]$

级数的乘积沿左上正方形外边缘相加。

$\sum\limits_{i=0}^{∞⁺} s_i · \sum\limits_{j=0}^{∞⁺} t_j = \sum\limits_{l=0}^{∞⁺} \left[ - s_l · t_l + \sum\limits_{k=0}^l (s_k · t_l + s_l · t_k) \right] = (s_0 · t_0) + (s_0 · t_1 + s_1 · t_1 + s_1 · t_0) + \cdots + (s_0 · t_l + s_1 · t_l + \cdots + s_l · t_l + \cdots + s_l · t_1 + s_l · t_0) + \cdots$

级数的乘积按左上正方形体横向相加。

$\sum\limits_{i=0}^{∞⁺} s_i · \sum\limits_{j=0}^{∞⁺} t_j = \lim\limits_{l⇝∞⁺} \sum\limits_{i=0}^l \left[ s_i · \sum\limits_{j=0}^l t_j \right] = \lim\limits_{l⇝∞⁺} \sum\limits_{i=0}^l s_i · T_l = \lim\limits_{l⇝∞⁺} \left[ s_0 · (t_0 + t_1 + ··· + t_l) + s_1 · (t_0 + t_1 + ··· + t_l) + ··· + s_{l-1} · (t_0 + t_1 + ··· + t_l) + s_l · (t_0 + t_1 + ··· + t_l) \right]$

级数的乘积按左上正方形体竖向相加。

$\sum\limits_{i=0}^{∞⁺} s_i · \sum\limits_{j=0}^{∞⁺} t_j = \lim\limits_{l⇝∞⁺} \sum\limits_{j=0}^l \left[ t_j · \sum\limits_{i=0}^l s_i \right] = \lim\limits_{l⇝∞⁺} \sum\limits_{j=0}^l t_j · S_l = \lim\limits_{l⇝∞⁺} [ t_0 · (s_0 + s_1 + ··· + s_l) + t_1 · (s_0 + s_1 + ··· + s_l) + ··· + t_{l-1} · (s_0 + s_1 + ··· + s_l) + t_l · (s_0 + s_1 + ··· + s_l) ]$

无穷级数的乘积收敛

若无穷级数之一绝对收敛,且其余无穷级数条件收敛,则无穷级数的乘积必定绝对收敛。

$\left[ \sum\limits_{i=0}^{∞⁺} s_i ⇝ S_{   } \right] ∧ \left[ \sum\limits_{j=0}^{∞⁺} t_j ⇝ T \right] ⇒ \left[ \lim\limits_{l⇝∞⁺} \sum\limits_{i=0}^l \left s_i · \sum\limits_{j=0}^l t_j \right ⇝ ST_{   } \right]$
$⇓$ $\sum\limits_{i=1}^{∞⁺} s_i · \sum\limits_{j=1}^{∞⁺} t_j = \lim\limits_{l⇝∞⁺} \sum\limits_{i=1}^l \left[ s_i · \sum\limits_{j=1}^l t_j \right] = \lim\limits_{l⇝∞⁺} \sum\limits_{i=1}^l s_i · T_l$ $⇒$ $\lim\limits_{l⇝∞⁺} \sum\limits_{i=1}^l \left s_i · \sum\limits_{j=1}^l t_j \right = \lim\limits_{l⇝∞⁺} \sum\limits_{i=1}^l s_i · T_l $                                    
$⇓$ $\lim\limits_{l⇝∞⁺} \sum\limits_{i=1}^l s_i · T_l = \lim\limits_{l⇝∞⁺} \left[ T · \sum\limits_{i=1}^l s_i + \sum\limits_{i=1}^l s_i · ( T_l - T ) \right]$                        
$⇓$ $\lim\limits_{l⇝∞⁺} \sum\limits_{i=1}^l s_i · T_l ≤ \lim\limits_{l⇝∞⁺} \left[ T · \sum\limits_{i=1}^l s_i + \sum\limits_{i=1}^L s_i · (   T_l - T   ) + \sum\limits_{i=L+1}^l s_i · (   T_l - T   ) \right]$    
$⇓$ $\lim\limits_{l⇝∞⁺} \sum\limits_{i=1}^l s_i · T_l T · \sum\limits_{i=1}^{∞⁺} s_i + ε_1 · \sum\limits_{i=1}^L s_i + \mathrm{Sup.} · \sum\limits_{i=L+1}^l s_i $ $⇐$ $∃L∈ℕ;[ l>L ⇒   T_l - T   < ε_1 ] ∧ [ l≤L ⇒   T_l - T   ≤ \mathrm{Sup.}]$
$⇓$ $\lim\limits_{l⇝∞⁺} \sum\limits_{i=1}^l s_i · T_l T · \sum\limits_{i=1}^{∞⁺} s_i + ε_1 · S_{   } + \mathrm{Sup.} · ε_2$                                
$⇓$ $\lim\limits_{l⇝∞⁺} \sum\limits_{i=1}^l s_i · T_l T · S_{   } + ε$ $⇐$ $ε = ε_1 · S_{   } + \mathrm{Sup.} · ε_2$                            
$⇓$ $\lim\limits_{l⇝∞⁺} \sum\limits_{i=1}^l \left s_i · \sum\limits_{j=1}^l t_j \right ⇝ ST_{   }$                                        

若无穷级数全都条件收敛,则无穷级数的乘积未必条件收敛。

若无穷级数全都条件收敛,且无穷级数的乘积条件收敛,则该乘积等于无穷级数的极限相乘。

$\left[ \sum\limits_{i=0}^{∞⁺} s_i = S \right] ∧ \left[ \sum\limits_{j=0}^{∞⁺} t_j = T \right] ∧ \left[ \sum\limits_{l=0}^{∞⁺} \left( \sum\limits_{k=0}^l s_k · t_{l-k} \right) = ST \right] ⇒ \left[ S · T = \sum\limits_{i=0}^{∞⁺} s_i · \sum\limits_{j=0}^{∞⁺} t_j = \sum\limits_{l=0}^{∞⁺} \left( \sum\limits_{k=0}^l s_k · t_{l-k} \right) = ST \right]$

典例:无穷级数$\sum\limits_{i=\rlap{≡}{0,}1}^{∞⁺} s_i = \sum\limits_{i=\rlap{≡}{0,}1}^{∞⁺} \dfrac{(-1)^{i} }{\sqrt{i} } ⇝ S$条件收敛,无穷级数$\sum\limits_{j=\rlap{≡}{0,}1}^{∞⁺} t_i = \sum\limits_{j=\rlap{≡}{0,}1}^{∞⁺} \dfrac{(-1)^j}{\sqrt{j} } ⇝ T$条件收敛, 两者的乘积沿对角线相加$\sum\limits_{i=\rlap{≡}{0,}1}^{∞⁺} s_i · \sum\limits_{j=\rlap{≡}{0,}1}^{∞⁺} t_j \not⇝ ST$。

$\lim\limits_{l⇝∞⁺} \left \sum\limits_{k=1}^l s_k · t_{l-k} \right = \lim\limits_{l⇝∞⁺} \left \sum\limits_{k=1}^l \dfrac{(-1)^k}{\sqrt{k} } · \dfrac{(-1)^{l - k} }{\sqrt{l - k} } \right = \lim\limits_{l⇝∞⁺} \sum\limits_{k=1}^l \dfrac{1}{\sqrt{k · (l - k)} } ≥ \lim\limits_{l⇝∞⁺} \dfrac{l}{\frac{k + (l - k)}{2} } ⇝ 2 ≠ 0$

无穷乘积

无穷乘积的部分积

$P_l ≡ \prod\limits_{n=0}^l p_n ≡ \prod\limits_{n=0}^l (1 + s_n)$

无穷乘积的极限

$\lim\limits_{l⇝∞⁺} P_l ≡ \lim\limits_{l⇝∞⁺} \prod\limits_{n=0}^l p_n ≡ \prod\limits_{n=0}^{∞⁺} p_n ≡ \prod\limits_{n=0}^{∞⁺} (1 + s_n)$

无穷乘积收敛

$\lim\limits_{l⇝∞⁺} P_l ⇝ P ≠ 0$,也即$\lim\limits_{l⇝∞⁺} P_l - P ⇝ 0$
$\prod\limits_{n=0}^{∞⁺} p_n ⇝ P ≠ 0$,也即$\lim\limits_{n⇝∞⁺} \left \prod\limits_{n=0}^n p_n - P \right ⇝ 0$

无穷乘积发散

$\lim\limits_{l⇝∞⁺} P_l \not⇝ P ≠ 0$,也即$\lim\limits_{l⇝∞⁺} P_l - P \not⇝ 0$
$\prod\limits_{n=0}^{∞⁺} p_n \not⇝ P ≠ 0$,也即$\lim\limits_{n⇝∞⁺} \left \prod\limits_{n=0}^n p_n - P \right \not⇝ 0$

无穷乘积收敛的性质

若无穷乘积收敛,则其通项的极限为一。

$\lim\limits_{l⇝∞⁺} P_l ⇝ P ≠ 0 ⇒ \lim\limits_{n⇝∞⁺} p_n ⇝ 1 ⇒ \lim\limits_{n⇝∞⁺} s_n ⇝ 0$

$\lim\limits_{n⇝∞⁺} p_n = \lim\limits_{n⇝∞⁺} \dfrac{P_n}{P_{n-1} } = \dfrac{\lim\limits_{n⇝∞⁺} P_n}{\lim\limits_{n⇝∞⁺} P_{n-1} } = \dfrac{P}{P} ⇝ 1$

若通项的极限不为一,则无穷乘积发散。

$\lim\limits_{n⇝∞⁺} p_n \not⇝ 1 ⇒ \lim\limits_{l⇝∞⁺} P_l \not⇝ P ≠ 0$

无穷乘积的对偶原理

若无穷乘积收敛,则其对应的无穷级数也收敛,反之亦然。

$\left[ \prod\limits_{n=0}^{∞⁺} p_n ⇝ P \right] ⇔ \left[ \ln \prod\limits_{n=0}^{∞⁺} p_n ⇝ \ln P \right] ⇔ \left[ \sum\limits_{n=0}^{∞⁺} \ln p_n ⇝ \ln P \right]$

$\left[ \prod\limits_{n=0}^{∞⁺} (1 + s_n ) ⇝ P_{   } \right] ⇔ \left[ \sum\limits_{n=0}^{∞⁺} \ln (1 + s_n ) ⇝ \ln P_{   } \right] ⇔ \left[ \sum\limits_{n=0}^{∞⁺} s_n ⇝ S_{   } \right]$

$\left[ \prod\limits_{n=0}^{∞⁺} (1 + s_n) ⇝ P \right] ⇔ \left[ \sum\limits_{n=0}^{∞⁺} \ln (1 + s_n) ⇝ \ln P \right] \mathop{⇒}\limits_{-1 < s_n ≤ 0} \left[ \sum\limits_{n=0}^{∞⁺} s_n ⇝ S \right]$

若无穷乘积发散于零,则其对应的无穷级数发散于负无穷。

$\left[ \prod\limits_{n=0}^{∞⁺} p_n ⇝ 0 \right] ⇔ \left[ \sum\limits_{n=0}^{∞⁺} \ln p_n ⇝ ∞⁻ \right]$

$\left[ \prod\limits_{n=0}^{∞⁺} (1 + s_n) ⇝ 0 \right] ⇔ \left[ \sum\limits_{n=0}^{∞⁺} \ln (1 + s_n) ⇝ ∞⁻ \right] \mathop{⇐}\limits_{-1 < s_n ≤ 0} \left[ \sum\limits_{n=0}^{∞⁺} s_n ⇝ ∞⁻ \right]$

$⇓$ $(1 + x ) · (1 + y ) = 1 + x + y + x · y ≥ 1 + x + y > x + y $    
$⇓$ $\prod\limits_{n=0}^{∞⁺} (1 + s_n ) > \sum\limits_{n=0}^{∞⁺} s_n ≥ \sum\limits_{n=0}^{∞⁺} \ln (1 + s_n ) ≥ 0$ $⇐$ $ s_n ≥ \ln (1 + s_n ) ≥ 0$                    
$⇓$ $\prod\limits_{n=0}^{∞⁺} (1 + s_n ) ⇝ P_{   } ⇒ \sum\limits_{n=0}^{∞⁺} s_n ⇝ S_{   } ⇒ \sum\limits_{n=0}^{∞⁺} \ln (1 + s_n ) ⇝ \ln P_{   }$                    
$⇓$ $\prod\limits_{n=0}^{∞⁺} (1 + s_n ) ⇝ P_{   } ⇔ \sum\limits_{n=0}^{∞⁺} s_n ⇝ S_{   } ⇔ \sum\limits_{n=0}^{∞⁺} \ln (1 + s_n ) ⇝ \ln P_{   }$                    
$⇓$ $-1 < s_n ≤ 0 ⇒ \prod\limits_{n=0}^{∞⁺} (1 + s_n) > 0 ≥ \sum\limits_{n=0}^{∞⁺} s_n ≥ \sum\limits_{n=0}^{∞⁺} \ln (1 + s_n)$ $⇐$ $ \ln (1 + s_n) s_n ≥ \ln (1 + s_n ) ≥ s_n ≥ \ln (1 + s_n) \mathop{=}\limits_{-1 < s_n} \ln 1 + s_n $                        
$⇓$ $\prod\limits_{n=0}^{∞⁺} (1 + s_n) ⇝ P ⇔ \sum\limits_{n=0}^{∞⁺} \ln (1 + s_n) ⇝ \ln P ⇒ \sum\limits_{n=0}^{∞⁺} s_n ⇝ S$                                            

特例:若$\sum\limits_{n=0}^{∞⁺} s_n^2 ⇝ \mathrm{Con.}$,则$\left[ \sum\limits_{n=0}^{∞⁺} s_n ⇝ S \right] ⇔ \left[ \sum\limits_{n=0}^{∞⁺} \ln (1 + s_n) ⇝ \ln P \right] ⇔ \left[ \prod\limits_{n=0}^{∞⁺} (1 + s_n) ⇝ P \right]$

$⇓$ $\sum\limits_{n=1}^{∞⁺} s_n^2 ⇝ \mathrm{Con.}$
$⇓$ $\lim\limits_{n⇝∞⁺} s_n^2 ⇝ 0 ⇒ \lim\limits_{n⇝∞⁺} s_n ⇝ 0 ⇒ \lim\limits_{n⇝∞⁺} \ln (1 + s_n) ⇝ 0$
$⇓$ $\lim\limits_{n⇝∞⁺} \dfrac{s_n - \ln (1 + s_n)}{s_n^2} = \lim\limits_{n⇝∞⁺} \dfrac{1}{2 · (1 + s_n)} ⇝ \dfrac{1}{2}$
$⇓$ $\sum\limits_{n=1}^{∞⁺} s_n^2 ⇝ \mathrm{Con.} ⇒ \left[ \sum\limits_{n=1}^{∞⁺} s_n - \sum\limits_{n=1}^{∞⁺} \ln (1 + s_n) ⇝ \mathrm{Con.} \right]$
$⇓$ $\sum\limits_{n=1}^{∞⁺} s_n^2 ⇝ \mathrm{Con.} ⇒ \left[ \sum\limits_{n=1}^{∞⁺} s_n ⇝ S ⇔ \sum\limits_{n=1}^{∞⁺} \ln (1 + s_n) ⇝ \ln P ⇔ \prod\limits_{n=1}^{∞⁺} (1 + s_n) ⇝ P \right]$
$⇓$ $\sum\limits_{n=1}^{∞⁺} s_n^2 ⇝ ∞⁺ ⇒ \left[ \sum\limits_{n=1}^{∞⁺} s_n - \sum\limits_{n=1}^{∞⁺} \ln (1 + s_n) ⇝ ∞⁺ \right]$
$⇓$ $\sum\limits_{n=1}^{∞⁺} s_n^2 ⇝ ∞⁺ ⇒ \left[ \sum\limits_{n=1}^{∞⁺} s_n ⇝ S ⇔ \sum\limits_{n=1}^{∞⁺} \ln (1 + s_n) ⇝ ∞⁻ ⇔ \prod\limits_{n=1}^{∞⁺} (1 + s_n) ⇝ 0 \right]$

无穷乘积的绝对收敛与条件收敛

若无穷乘积绝对收敛,则必定条件收敛。

$\left[ \prod\limits_{n=0}^{∞⁺} (1 + s_n ) ⇝ P_{   } \right] ⇔ \left[ \sum\limits_{n=0}^{∞⁺} \ln (1 + s_n ) ⇝ \ln P_{   } \right] ⇒ \left[ \sum\limits_{n=0}^{∞⁺} \ln (1 + s_n) ⇝ \ln P \right] ⇔ \left[ \prod\limits_{n=0}^{∞⁺} (1 + s_n) ⇝ P \right]$

若无穷乘积条件收敛,则未必绝对收敛。

$\left[ \prod\limits_{n=0}^{∞⁺} (1 + s_n) ⇝ P \right] ⇔ \left[ \sum\limits_{n=0}^{∞⁺} \ln (1 + s_n) ⇝ \ln P \right] \not⇒ \left[ \sum\limits_{n=0}^{∞⁺} \ln (1 + s_n ) ⇝ \ln P_{   } \right] ⇔ \left[ \prod\limits_{n=0}^{∞⁺} (1 + s_n ) ⇝ P_{   } \right]$

无穷乘积绝对收敛与条件收敛的性质

若无穷乘积绝对收敛,则交换任意多项的次序,其极限不变并且保持绝对收敛。

若无穷乘积条件收敛,则交换任意多项的次序,可使其趋近于任意给定的正数。

函数项级数

函数项级数的部分和

$F_n (x) ≡ \sum\limits_{i=0}^n f_i (x)$

函数项级数的极限

$\lim\limits_{n⇝∞⁺} F_n (x) ≡ \lim\limits_{n⇝∞⁺} \sum\limits_{i=0}^n f_i (x) ≡ \sum\limits_{i=0}^{∞⁺} f_i (x)$

函数项级数收敛

$\lim\limits_{x⇝x_0} \lim\limits_{n⇝∞⁺} F_n (x) ⇝ F(x_0)$也即$\lim\limits_{x⇝x_0} \lim\limits_{n⇝∞⁺} F_n (x) - F (x_0) ⇝ 0$
$\lim\limits_{x⇝x_0} \lim\limits_{n⇝∞⁺} \sum\limits_{i=0}^n f_i (x) ⇝ F (x_0)$也即$\lim\limits_{x⇝x_0} \lim\limits_{n⇝∞⁺} \left \sum\limits_{i=0}^n f_i (x) - F (x_0) \right ⇝ 0$

函数项级数发散

$\lim\limits_{x⇝x_0} \lim\limits_{n⇝∞⁺} F_n (x) \not⇝ F(x_0)$也即$\lim\limits_{x⇝x_0} \lim\limits_{n⇝∞⁺} F_n (x) - F (x_0) \not⇝ 0$
$\lim\limits_{x⇝x_0} \lim\limits_{n⇝∞⁺} \sum\limits_{i=0}^n f_i (x) \not⇝ F (x_0)$也即$\lim\limits_{x⇝x_0} \lim\limits_{n⇝∞⁺} \left \sum\limits_{i=0}^n f_i (x) - F (x_0) \right \not⇝ 0$

典例:函数项级数$F_n (x) = x^0 + \sum\limits_{i=1}^n (x^i - x^{i-1}) = x^n$

$F (x) = \lim\limits_{n⇝∞⁺} F_n (x) = \lim\limits_{n⇝∞⁺} x^n$

函数项级数$F_n (x)$在收敛区间$(-1, 1]$内都连续且可导,在点$x = 1$处不连续也不可导。

$x < -1$ $⇒$ $\lim\limits_{n⇝∞⁺} x^n ⇝ ∞$    
$x = -1$ $⇒$ $\lim\limits_{n⇝∞⁺} x^n \not⇝ \mathrm{Lim.}$    
$ x < +1$ $⇒$ $\lim\limits_{n⇝∞⁺} x^n ⇝ 0$
$x = +1$ $⇒$ $\lim\limits_{n⇝∞⁺} x^n ⇝ 1$    
$x > +1$ $⇒$ $\lim\limits_{n⇝∞⁺} x^n ⇝ ∞⁺$    

函数项级数的一致收敛

函数项级数一致收敛

$\left[ ∀ε>0;∃N∈ℕ;∀n≥N; \sup\limits_{x∈X} F_n (x) - F (x) ≤ ε \right] ⇔ [∀ε>0;∃N∈ℕ;∀n≥N;∀x∈X; F_n (x) - F (x) < ε]$
$\left[ ∀ε>0;∃N∈ℕ;∀n≥N;∀m>N; \sup\limits_{x∈X} F_m (x) - F_n (x) ≤ ε \right] ⇔ [∀ε>0;∃N∈ℕ;∀n≥N;∀m>N;∀x∈X; F_m (x) - F_n (x) < ε]$
$\left[ ∀ε>0;∃N∈ℕ;∀n≥N;∀m>n; \sup\limits_{x∈X} \left \sum\limits_{i=n}^m f_i (x) \right ≤ ε \right] ⇔ \left[ ∀ε>0;∃N∈ℕ;∀n≥N;∀m>n;∀x∈X; \left \sum\limits_{i=n}^m f_i (x) \right < ε \right]$
$\left[ \lim\limits_{n⇝∞⁺} F_n (x) \mathop{↭}\limits_{x∈X} F (x) \right] ⇔ \left[ \lim\limits_{n⇝∞⁺} F_n (x) - F (x) \mathop{↭}\limits_{x∈X} 0 \right] ⇔ \left[ \lim\limits_{n⇝∞⁺} \sup\limits_{x∈X} F_n (x) - F (x) ⇝ 0 \right]$
$\left[ \sum\limits_{i=0}^{∞⁺} f_i (x) \mathop{↭}\limits_{x∈X} F (x) \right] ⇔ \left[ \lim\limits_{n⇝∞⁺} \left \sum\limits_{i=0}^n f_i (x) - F (x) \right \mathop{↭}\limits_{x∈X} 0 \right] ⇔ \left[ \lim\limits_{n⇝∞⁺} \sup\limits_{x∈X} \left \sum\limits_{i=0}^n f_i (x) - F (x) \right ⇝ 0 \right]$

若函数项级数一致收敛,则其通项一致收敛于零。

$\lim\limits_{n⇝∞⁺} F_n (x) \mathop{↭}\limits_{x∈X} F (x) ⇒ \lim\limits_{i⇝∞⁺} f_i (x) \mathop{↭}\limits_{x∈X} 0 ⇔ \lim\limits_{i⇝∞⁺} \sup\limits_{x∈X} f_i (x) ⇝ 0 $

函数项级数非一致收敛

$[∃ε>0;∀N∈ℕ;∃n≥N; \sup\limits_{x∈X} F_n (x) - F (x) > ε] ⇔ [∃ε>0;∀N∈ℕ;∃n≥N;∃x∈X; F_n (x) - F (x) ≥ ε]$
$[∃ε>0;∀N∈ℕ;∃n≥N;∃m>N; \sup\limits_{x∈X} F_m (x) - F_n (x) > ε] ⇔ [∃ε>0;∀N∈ℕ;∃n≥N;∃m>N;∃x∈X; F_m (x) - F_n (x) ≥ ε]$
$[∃ε>0;∀N∈ℕ;∃n≥N;∃m>n; \sup\limits_{x∈X} \left \sum\limits_{i=n}^m f_i (x) \right > ε] ⇔ [∃ε>0;∀N∈ℕ;∃n≥N;∃m>n;∃x∈X; \left \sum\limits_{i=n}^m f_i (x) \right ≥ ε]$
$\left[ \lim\limits_{n⇝∞⁺} F_n (x) \mathop{\not↭}\limits_{x∈X} F (x) \right] ⇔ \left[ \lim\limits_{n⇝∞⁺} F_n (x) - F (x) \mathop{\not↭}\limits_{x∈X} 0 \right] ⇔ \left[ \lim\limits_{n⇝∞⁺} \sup\limits_{x∈X} F_n (x) - F (x) \not⇝ 0 \right]$
$\left[ \sum\limits_{i=1}^{∞⁺} f_i (x) \mathop{\not↭}\limits_{x∈X} F (x) \right] ⇔ \left[ \lim\limits_{n⇝∞⁺} \left \sum\limits_{i=1}^n f_i (x) - F (x) \right \mathop{\not↭}\limits_{x∈X} 0 \right] ⇔ \left[ \lim\limits_{n⇝∞⁺} \sup\limits_{x∈X} \left \sum\limits_{i=1}^n f_i (x) - F (x) \right \not⇝ 0 \right]$

若通项不一致收敛于零,则函数项级数非一致收敛。

$\lim\limits_{n⇝∞⁺} F_n (x) \mathop{\not↭}\limits_{x∈X} F (x) ⇐ \lim\limits_{i⇝∞⁺} f_i (x) \mathop{\not↭}\limits_{x∈X} 0 ⇔ \lim\limits_{i⇝∞⁺} \sup\limits_{x∈X} f_i (x) \not⇝ 0 $

典例:函数项级数$F_n (x) = x^0 + \sum\limits_{i=1}^n (x^i - x^{i-1}) = x^n$在区间$(0, 1)$上非一致收敛。

$F (x) = \lim\limits_{n⇝∞⁺} F_n (x) = \lim\limits_{n⇝∞⁺} x^n \mathop{⇝}\limits_{x∈(0, 1)} 0$

$\lim\limits_{n⇝∞⁺} \sup\limits_{x∈(0, 1)} F_n (x) - F(x) = \lim\limits_{n⇝∞⁺} \sup\limits_{x∈(0, 1)} x^n ⇝ 1 ≠ 0$

若函数项级数有优正项级数,则必定绝对一致收敛。

若函数项级数绝对一致收敛,则必定条件一致收敛。

$\left[ ∃N∈ℕ;∀i≥N; \sup\limits_{x∈X} f_i (x) s_i \right] ⇔ \left[ ∃N∈ℕ;∀i≥N;∀x∈X; f_i (x) s_i \right] ⇒ \left[ \sum\limits_{i=1}^{∞⁺} s_i ⇝ S ⇒ \sum\limits_{i=1}^{∞⁺} f_i (x) \mathop{↭}\limits_{x∈X} F_{   } (x) ⇒ \sum\limits_{i=1}^{∞⁺} f_i (x) \mathop{↭}\limits_{x∈X} F (x) \right]$
$\left[ ∃N∈ℕ;∀n≥N;∀m>n; \sup\limits_{x∈X} \left \sum\limits_{i=n}^m f_i (x) \right ≤ \sup\limits_{x∈X} \left \sum\limits_{i=n}^m f_i (x) \right ≤ \left \sum\limits_{i=n}^m s_i \right < ε \right] ⇔ \left[ ∃N∈ℕ;∀n≥N;∀m>n;∀x∈X; \left \sum\limits_{i=n}^m f_i (x) \right ≤ \left \sum\limits_{i=n}^m f_i (x) \right ≤ \left \sum\limits_{i=n}^m s_i \right < ε \right]$

函数项级数一致收敛的性质

若函数项级数收敛,且函数项为连续函数,则其和函数未必为连续函数。

典例:函数项级数$\sum\limits_{i=\rlap{≡}{0,}1}^{∞⁺} \dfrac{\sin i · x}{i} = \dfrac{\pi - x}{2}$,以$T = 2 · \pi$为周期,在点$x = 2 · i · \pi$处不连续。

若函数项级数一致收敛,且函数项为连续函数,则其和函数必定为连续函数。$P ∧ Q ⇒ R$

若函数项为连续函数,但和函数非连续函数,则函数项级数必定非一致收敛。$Q ∧ ¬R ⇒ ¬P$

$\fbox{1}$ $∀ε_1>0;∃δ>0;∃N∈ℕ;∀x∈X;∀n≥N; x_0∈X ∧ x - x_0 < δ ⇒ F_n (x) - F_n (x_0) < ε_1$        
$\fbox{2}$ $∀ε_3>0;∃N∈ℕ;∀n≥N;∀x∈X; F_n (x) - F (x) < ε_3$            
$⇓$ $∀ε_2>0;∃N∈ℕ;∀n≥N; x_0∈X ⇒ F_n (x_0) - F (x_0) < ε_2$            
$⇓$ $∀ε_1>0;∀ε_2>0;∀ε_4=ε_1+ε_2;∃δ>0;∃N∈ℕ;∀x∈X;∀n≥N; x_0∈X ∧ x - x_0 < δ ⇒ F_n (x) - F (x_0) < F_n (x) - F_n (x_0) + F_n (x_0) - F (x_0) < ε_4$
$⇓$ $∀ε_4>0;∃δ>0;∃N∈ℕ;∀x∈X;∀n≥N; x_0∈X ∧ x - x_0 < δ ⇒ F_n (x) - F (x_0) < ε_4$        
$⇕$ $∀ε_4>0;∃δ>0;∃N∈ℕ;∀n≥N;∀x∈X; x_0∈X ∧ x - x_0 < δ ⇒ F_n (x) - F (x_0) < ε_4$        
$⇓$ $\lim\limits_{x⇝x_0} \lim\limits_{n⇝∞⁺} F_n (x) \mathop{≡}\limits_{\fbox{1} } \lim\limits_{n⇝∞⁺ \ x⇝x_0} F_n (x) \mathop{≡}\limits_{\fbox{2} } \lim\limits_{n⇝∞⁺} \lim\limits_{x⇝x_0} F_n (x)$                
$⇓$ $∀ε_3>0;∀ε_4>0;∀ε_5=ε_3+ε_4;∃δ>0;∃N∈ℕ;∀n≥N;∀x∈X; x_0∈X ∧ x - x_0 < δ ⇒ F (x) - F (x_0) F (x) - F_n (x) + F_n (x) - F (x_0) < ε_5$
$⇓$ $∀ε_5>0;∃δ>0;∀x∈X; x_0∈X ∧ x - x_0 < δ ⇒ F (x) - F (x_0) < ε_5$        
$⇓$ $\lim\limits_{x⇝x_0} F (x) ⇝ F (x_0)$                

若函数项级数$F_n (x)$在区间$X$上一致收敛,则多重极限可以随意交换极限运算的次序。

$\lim\limits_{x⇝x_0} \lim\limits_{n⇝∞⁺} F_n (x) ≡ \lim\limits_{n⇝∞⁺ \ x⇝x_0} F_n (x) ≡ \lim\limits_{n⇝∞⁺} \lim\limits_{x⇝x_0} F_n (x)$

若函数项级数$F_n (x)$在区间$X$上非一致收敛,则多重极限不可随意交换极限运算的次序。

$\lim\limits_{x⇝x_0} \lim\limits_{n⇝∞⁺} F_n (x) \not≡ \lim\limits_{n⇝∞⁺ \ x⇝x_0} F_n (x) \not≡ \lim\limits_{n⇝∞⁺} \lim\limits_{x⇝x_0} F_n (x)$

典例:分段函数项级数$F_n (x) = \mathop{2 · n · x}\limits_{0 ≤ x ≤ \frac{1}{2 · n} }; \mathop{2 · (1 - n · x)}\limits_{\frac{1}{2 · n} < x ≤ \frac{1}{n} }; \mathop{0}\limits_{\frac{1}{n} < x ≤ 1}$在区间$[0, 1]$内非一致收敛。

$\lim\limits_{x⇝0} \lim\limits_{n⇝∞⁺} F_n (x) = \lim\limits_{x⇝0} 0 ⇝ 0$

$\lim\limits_{n⇝∞⁺ \ x≡\frac{1}{2 · n}⇝0} F_n (x) = \lim\limits_{n⇝∞⁺} 2 · n · \dfrac{1}{2 · n} ⇝ 1 $

$\lim\limits_{n⇝∞⁺} \lim\limits_{x⇝0} F_n (x) = \lim\limits_{n⇝∞⁺} 0 ⇝ 0 $

函数项级数不可随意交换极限运算与求和运算的次序,除非函数项级数$F_n (x)$在区间$X$上一致收敛。

$\lim\limits_{x⇝x_0} \lim\limits_{n⇝∞⁺} F_n (x) ≡ \lim\limits_{x⇝x_0} \lim\limits_{n⇝∞⁺} \sum\limits_{i=0}^{n} f_i (x) ≡ \lim\limits_{x⇝x_0} \sum\limits_{i=0}^{∞⁺} f_i (x) \not≡ \sum\limits_{i=0}^{∞⁺} \lim\limits_{x⇝x_0} f_i (x) ≡ \lim\limits_{n⇝∞⁺} \sum\limits_{i=0}^n \lim\limits_{x⇝x_0} f_i (x) ≡ \lim\limits_{n⇝∞⁺} \lim\limits_{x⇝x_0} \sum\limits_{i=0}^n f_i (x) ≡ \lim\limits_{n⇝∞⁺} \lim\limits_{x⇝x_0} F_n (x)$

函数项级数不可随意交换极限运算与积分运算的次序,除非函数项级数$F_n (x)$在区间$[α, β]$上一致收敛。?

$\int\limits_α^β \left[ \lim\limits_{n⇝∞⁺} F_n (x) \right] \mathrm{d}x ≡ \int\limits_α^β \left[ \lim\limits_{n⇝∞⁺} \sum\limits_{i=0}^n f_i (x) \right] \mathrm{d}x ≡ \int\limits_α^β \left[ \sum\limits_{i=0}^{∞⁺} f_i (x) \right] \mathrm{d}x \not≡ \sum\limits_{i=0}^{∞⁺} \left[ \int\limits_α^β f_i (x) \mathrm{d}x \right] ≡ \lim\limits_{n⇝∞⁺} \sum\limits_{i=0}^n \left[ \int\limits_α^β f_i (x) \mathrm{d}x \right] ≡ \lim\limits_{n⇝∞⁺} \int\limits_α^β \left[ \sum\limits_{i=0}^n f_i (x) \right] \mathrm{d}x ≡ \lim\limits_{n⇝∞⁺} \int\limits_α^β F_n (x) \mathrm{d}x$

函数项级数不可随意交换极限运算与求导运算的次序,除非函数项级数$F_n (x)$在区间$X$上一致收敛。?

$\lim\limits_{x⇝x_0} \dfrac{\mathrm{d} }{\mathrm{d}x} \left[ \lim\limits_{n⇝∞⁺} F_n (x) \right] ≡ \lim\limits_{x⇝x_0} \dfrac{\mathrm{d} }{\mathrm{d}x} \left[ \lim\limits_{n⇝∞⁺} \sum\limits_{i=0}^n f_i (x) \right] ≡ \lim\limits_{x⇝x_0} \dfrac{\mathrm{d} }{\mathrm{d}x} \left[ \sum\limits_{i=0}^{∞⁺} f_i (x) \right] \not≡ \sum\limits_{i=0}^{∞⁺} \lim\limits_{x⇝x_0} \dfrac{\mathrm{d} f_i (x)}{\mathrm{d}x} ≡ \lim\limits_{n⇝∞⁺} \sum\limits_{i=0}^n \lim\limits_{x⇝x_0} \dfrac{\mathrm{d} f_i (x)}{\mathrm{d}x} ≡ \lim\limits_{n⇝∞⁺} \lim\limits_{x⇝x_0} \dfrac{\mathrm{d} }{\mathrm{d}x} \left[ \sum\limits_{i=0}^n f_i (x) \right] ≡ \lim\limits_{n⇝∞⁺} \lim\limits_{x⇝x_0} \dfrac{\mathrm{d} F_n (x)}{\mathrm{d}x}$

典例:函数项级数$F_n (x) = \sum\limits_{i=\rlap{≡}{0,}1}^n \left[ i · x · (1 - x^2)^i - (i - 1) · x · (1 - x^2)^{i-1} \right] $在区间$[0, 1]$上非一致收敛。

$\int\limits_0^1 \left[ \lim\limits_{n⇝∞⁺} F_n (x) \right] \mathrm{d}x = \int_0^1 \lim\limits_{n⇝∞⁺} \left[ n · x · (1 - x^2)^n \right] \mathrm{d}x = \int\limits_0^1 \lim\limits_{n⇝∞⁺} \left[ \mathop{0}\limits_{x=0,1}; \mathop{n · x · (1 - x^2)^n}\limits_{x∈(0, 1)} \right] \mathrm{d}x = \int\limits_0^1 0 \mathrm{d}x = 0 ≠ \dfrac{1}{2}$

$\lim\limits_{n⇝∞⁺} \int\limits_0^1 F_n (x) \mathrm{d}x = \lim\limits_{n⇝∞⁺} \int\limits_0^1 [ n · x · (1 - x^2)^n ] \mathrm{d}x = \lim\limits_{n⇝∞⁺} \left. \dfrac{- n · (1 - x^2)^{n + 1} }{2 · (n + 1)} \right 0^1 = \lim\limits{n⇝∞⁺} \dfrac{n}{2 · (n + 1)} ⇝ \dfrac{1}{2}$

典例:函数项级数$F_n (x) = \sum\limits_{i=\rlap{≡}{0,}1}^n f_i (x) = \sum\limits_{i=\rlap{≡}{0,}1}^n \left[ ә^{-i · x^2} - ә^{-(i - 1) · x^2} \right] = ә^{-n · x^2} - 1$

$\lim\limits_{x⇝0} \dfrac{\mathrm{d} }{\mathrm{d}x} \left[ \lim\limits_{n⇝∞⁺} F_n (x) \right] = \lim\limits_{x⇝0} \dfrac{\mathrm{d} }{\mathrm{d}x} \left[ \lim\limits_{n⇝∞⁺} \left( ә^{-n·x^2} - 1 \right) \right] = \lim\limits_{x⇝0} \dfrac{\mathrm{d} }{\mathrm{d}x} \left[ \mathop{0}\limits_{x=0}, \mathop{-1}\limits_{x≠0} \right] \not≡ 0$

$\lim\limits_{n⇝∞⁺} \lim\limits_{x⇝0} \dfrac{\mathrm{d} F_n (x)}{\mathrm{d}x} = \lim\limits_{n⇝∞⁺} \lim\limits_{x⇝0} \dfrac{\mathrm{d} (ә^{-n · x^2} - 1)}{\mathrm{d}x} = \lim\limits_{n⇝∞⁺} \lim\limits_{x⇝0} -2 · n · x · ә^{-n · x^2} ≡ 0$

幂级数

幂级数的部分和

$F_n (x) ≡ \sum\limits_{i=0}^n p_i · (x - x_0)^i$

幂级数的极限

$\lim\limits_{n⇝∞⁺} F_n (x) ≡ \lim\limits_{n⇝∞⁺} \sum\limits_{i=0}^n p_i · (x - x_0)^i ≡ \sum\limits_{i=0}^{∞⁺} p_i · (x - x_0)^i$

幂级数收敛

$\lim\limits_{x⇝x_0} \lim\limits_{n⇝∞⁺} F_n (x) ⇝ F (x_0) ⇔ \lim\limits_{x⇝x_0} \lim\limits_{n⇝∞⁺} F_n (x) - F (x_0) ⇝ 0$
$\lim\limits_{x⇝x_0} \lim\limits_{n⇝∞⁺} \sum\limits_{i=0}^n p_i · (x - x_0)^i ⇝ F (x_0) ⇔ \lim\limits_{x⇝x_0} \lim\limits_{n⇝∞⁺} \left \sum\limits_{i=0}^n p_i · (x - x_0)^i - F (x_0) \right ⇝ 0$

幂级数发散

$\lim\limits_{x⇝x_0} \lim\limits_{n⇝∞⁺} F_n (x) \not⇝ F (x_0) ⇔ \lim\limits_{x⇝x_0} \lim\limits_{n⇝∞⁺} F_n (x) - F (x_0) \not⇝ 0$
$\lim\limits_{x⇝x_0} \lim\limits_{n⇝∞⁺} \sum\limits_{i=0}^n p_i · (x - x_0)^i \not⇝ F (x_0) ⇔ \lim\limits_{x⇝x_0} \lim\limits_{n⇝∞⁺} \left \sum\limits_{i=0}^n p_i · (x - x_0)^i - F (x_0) \right \not⇝ 0$

幂级数收敛的性质

若幂级数在点$x_1 - x_0$处条件收敛,则在区间$[±0, x_1 - x_0]$上条件一致收敛。

若幂级数在点$x_1 - x_0$处绝对收敛,则在区间$[±0, x_1 - x_0]$上绝对一致收敛。

$\left[ \sum\limits_{i=0}^{∞⁺} p_i · (x_1 - x_0)^i ⇝ F (x_1) \right] ⇒ \left[ \sum\limits_{i=0}^{∞⁺} p_i · (x - x_0)^i \mathop{↭}\limits_{[±0, x - x_0]⊆[±0, x_1 - x_0]} F (x) \right]$

$\left[ \sum\limits_{i=0}^{∞⁺} p_i · (x_1 - x_0)^i ⇝ F_{   } (x_1) \right] ⇒ \left[ \sum\limits_{i=0}^{∞⁺} p_i · (x - x_0)^i \mathop{↭}\limits_{[±0, x - x_0]⊆[±0, x_1 - x_0]} F_{   } (x) \right]$

若幂级数在点$x_1 - x_0$处条件收敛,则在区间$[±0, x_1 - x_0)$上绝对收敛,且在区间$[±0, x_1 - x_0]$上条件收敛。

若幂级数在点$x_1 - x_0$处绝对收敛,则在区间$[±0, x_1 - x_0]$上绝对收敛,且在区间$[±0, x_1 - x_0]$上条件收敛。

若幂级数在点$x_2 - x_0$处绝对发散,则在区间$(x_2 - x_0, ±∞)$上条件发散,且在区间$[x_2 - x_0, ±∞)$上绝对发散。

若幂级数在点$x_2 - x_0$处条件发散,则在区间$[x_2 - x_0, ±∞)$上条件发散,且在区间$[x_2 - x_0, ±∞)$上绝对发散。

$\left[ \sum\limits_{i=0}^{∞⁺} p_i · (x_1 - x_0)^i ⇝ F_{   } (x_1) \right] ⇒ \left[ \sum\limits_{i=0}^{∞⁺} p_i · (x_1 - x_0)^i ⇝ F (x_1) \right] ⇒ \left[ \sum\limits_{i=0}^{∞⁺} p_i · (x_2 - x_0)^i \mathop{⇝}\limits_{ x_2 - x_0 < x_1 - x_0 } F_{   } (x_2) \right] ⇒ \left[ \sum\limits_{i=0}^{∞⁺} p_i · (x - x_0)^i \mathop{⇝}\limits_{ x - x_0 x_2 - x_0 < x_1 - x_0 } F (x) \right]$
$\left[ \sum\limits_{i=0}^{∞⁺} p_i · (x_2 - x_0)^i \not⇝ F (x_2) \right] ⇒ \left[ \sum\limits_{i=0}^{∞⁺} p_i · (x_2 - x_0)^i \not⇝ F_{   } (x_2) \right] ⇒ \left[ \sum\limits_{i=0}^{∞⁺} p_i · (x_1 - x_0)^i \mathop{\not⇝}\limits_{ x_1 - x_0 > x_2 - x_0 } F (x_1) \right] ⇒ \left[ \sum\limits_{i=0}^{∞⁺} p_i · (x - x_0)^i \mathop{\not⇝}\limits_{ x - x_0 x_1 - x_0 > x_2 - x_0 } F_{   } (x) \right]$
$⇓$ $\sum\limits_{i=1}^{∞⁺} p_i · (x - x_0)^i = \sum\limits_{i=1}^{∞⁺} p_i · (x_1 - x_0)^i · \dfrac{(x - x_0 )^i}{(x_1 - x_0)^i}$                                
$⇓$ $\left[ \sum\limits_{i=1}^{∞⁺} p_i · (x_1 - x_0)^i ⇝ F (x_1) \right] ⇒ \left[ \sum\limits_{i=1}^{∞⁺} p_i · (x - x_0)^i \mathop{↭}\limits_{[±0, x - x_0] ⊆ [±0, x_1 - x_0]} F (x) \right]$ $⇐$ $\left[ \sum\limits_{i=1}^{∞⁺} p_i · (x_1 - x_0)^i ⇝ F (x_1) \right] ∧ \left[ \left \dfrac{(x - x_0)^i}{(x_1 - x_0)^i} \right ≤ 1 \right]$                        
$⇓$ $\left[ \sum\limits_{i=1}^{∞⁺} p_i · (x_1 - x_0)^i ⇝ F_{   } (x_1) \right] ⇒ \left[ \sum\limits_{i=1}^{∞⁺} p_i · (x - x_0)^i \mathop{↭}\limits_{[±0, x - x_0] ⊆ [±0, x_1 - x_0]} F_{   } (x) \right]$ $⇐$ $\left[ \sum\limits_{i=1}^{∞⁺} p_i · (x_1 - x_0)^i ⇝ F_{   } (x_1) \right] ∧ \left[ \left \dfrac{(x - x_0)^i}{(x_1 - x_0)^i} \right ≤ 1 \right]$
$⇓$ $\left[ \sum\limits_{i=1}^{∞⁺} p_i · (x_1 - x_0)^i ⇝ F (x_1) \right] ⇒ \left[ \sum\limits_{i=1}^{∞⁺} p_i · (x - x_0)^i \mathop{⇝}\limits_{ x - x_0 < x_1 - x_0 } F_{   } (x) \right]$ $⇐$ $[ p_i · (x_1 - x_0)^i ≤ \mathrm{Sup.} ] ∧ \left[ \sum\limits_{i=1}^{∞⁺} \dfrac{(x - x_0)^i}{(x_1 - x_0)^i} ⇝ \mathrm{Con.} \right]$        
$⇓$ $\left[ \sum\limits_{i=1}^{∞⁺} p_i · (x - x_0)^i \not⇝ F_{   } (x) \right] ⇒ \left[ \sum\limits_{i=1}^{∞⁺} p_i · (x_1 - x_0)^i \mathop{\not⇝}\limits_{ x - x_0 < x_1 - x_0 } F (x_1) \right]$                

幂级数的绝对收敛半径$R$与绝对发散半径$\overline{R}$。

$R ≡ \dfrac{1}{\varlimsup\limits_{i⇝∞⁺} \sqrt[i]{ p_i } } ≡ \varliminf\limits_{i⇝∞⁺} \dfrac{1}{\sqrt[i]{ p_i } } < \varlimsup\limits_{i⇝∞⁺} \dfrac{1}{\sqrt[i]{ p_i } } ≡ \dfrac{1}{\varliminf\limits_{i⇝∞⁺} \sqrt[i]{ p_i } } ≡ \overline{R}$
幂级数在绝对收敛半径内区间$ x - x_0 ≤ R_γ < R$上绝对一致收敛。

幂级数在绝对收敛半径内绝对收敛且条件收敛,幂级数在绝对发散半径外条件发散且绝对发散。

$\left[ \sum\limits_{i=0}^{∞⁺} p_i · (x - x_0 )^i \mathop{↭}\limits_{ x - x_0 ≤ R_γ < R} F_{   } (x) \right] ⇒ \left[ \sum\limits_{i=0}^{∞⁺} p_i · (x - x_0 )^i \mathop{↭}\limits_{ x - x_0 ≤ R_γ < R} F (x) \right]$
$\left[ \sum\limits_{i=0}^{∞⁺} p_i · (x - x_0)^i \mathop{⇝}\limits_{ x - x_0 < R} F_{   } (x) \right] ⇒ \left[ \sum\limits_{i=0}^{∞⁺} p_i · (x - x_0)^i \mathop{⇝}\limits_{ x - x_0 < R} F (x) \right]$
$\left[ \sum\limits_{i=0}^{∞⁺} p_i · (x - x_0)^i \mathop{\not⇝}\limits_{ x - x_0 > \overline{R} } F_{   } (x) \right] ⇒ \left[ \sum\limits_{i=0}^{∞⁺} p_i · (x - x_0)^i \mathop{\not⇝}\limits_{ x - x_0 > \overline{R} } F (x) \right]$
$⇑$ $\varlimsup\limits_{i⇝∞⁺} p_i · (x - x_0)^i ⇝ \dfrac{1}{γ_+^i}$ $\mathop{⇒}\limits^{γ_+ > 1}$ $\sum\limits_{i=1}^{∞⁺} p_i · (x - x_0 )^i ↭ F_{   } (x)$                    
$⇑$ $\varliminf\limits_{i⇝∞⁺} \dfrac{1}{\sqrt[i]{ p_i · (x - x_0)^i } } = \varliminf\limits_{i⇝∞⁺} \dfrac{1}{\sqrt[i]{ p_i } · x - x_0 } ⇝ γ_+ > 1$ $\mathop{⇒}\limits^{γ_+ > 1}$ $\sum\limits_{i=1}^{∞⁺} p_i · (x - x_0)^i ⇝ F_{   } (x)$            
$⇑$ $\varlimsup\limits_{i⇝∞⁺} \dfrac{1}{\sqrt[i]{ p_i · (x - x_0)^i } } = \varlimsup\limits_{i⇝∞⁺} \dfrac{1}{\sqrt[i]{ p_i } · x - x_0 } ⇝ γ_- < 1$ $\mathop{⇒}\limits^{γ_- < 1}$ $\sum\limits_{i=1}^{∞⁺} p_i · (x - x_0)^i \not⇝ F_{   } (x)$            
$⇑$ $R ≡ \dfrac{1}{\varlimsup\limits_{i⇝∞⁺} \sqrt[i]{ p_i } } ≡ \varliminf\limits_{i⇝∞⁺} \dfrac{1}{\sqrt[i]{ p_i } } ⇝ γ_+ · x - x_0 > x - x_0 $   $\overline{R} ≡ \dfrac{1}{\varliminf\limits_{i⇝∞⁺} \sqrt[i]{ p_i } } ≡ \varlimsup\limits_{i⇝∞⁺} \dfrac{1}{\sqrt[i]{ p_i } } ⇝ γ_- · x - x_0 < x - x_0 $
$⇑$ $R_γ ≡ \dfrac{R}{γ_+} ≥ x - x_0 $ $\mathop{⇒}\limits^{γ_+ > 1}$ $\sum\limits_{i=1}^{∞⁺} p_i · (x - x_0 )^i \mathop{↭}\limits_{ x - x_0 ≤ R_{γ} < R} F_{   } (x)$                
$⇑$ $R > x - x_0 $ $⇒$ $\sum\limits_{i=1}^{∞⁺} p_i · (x - x_0)^i \mathop{⇝}\limits_{ x - x_0 < R} F_{   } (x)$                
$⇑$ $\overline{R} < x - x_0 $ $\mathop{⇒}\limits^{\overline{R} ≥ R}$ $\sum\limits_{i=1}^{∞⁺} p_i · (x - x_0)^i \mathop{\not⇝}\limits_{ x - x_0 > \overline{R} } F_{   } (x)$                

比值审敛法的绝对收敛半径小于等于根值审敛法的绝对收敛半径,比值审敛法的绝对发散半径大于等于根值审敛法的绝对发散半径。

$\left[ \varliminf\limits_{i ⇝ ∞⁺} \left \dfrac{p_i}{p_{i+1} } \right ≤ \varliminf\limits_{i ⇝ ∞⁺} {\dfrac{1}{\sqrt[i]{ p_i } } } ≡ R \right] ≤ \left[ \overline{R} ≡ \varlimsup\limits_{i ⇝ ∞⁺} \dfrac{1}{\sqrt[i]{ p_i } } ≤ \varlimsup\limits_{i ⇝ ∞⁺} \left \dfrac{p_i}{p_{i+1} } \right \right]$

特例:幂级数$\sum\limits_{i=0 \ j=2·i,2·i+1}^{∞⁺} \left[ \dfrac{1}{2^{2 · i} } · (x - x_0)^{2·i} + \dfrac{1}{3^{2 · i + 1} } · (x - x_0)^{2·i+1} \right]$

$\varliminf\limits_{j⇝∞⁺} \dfrac{ p_j }{ p_{j+1} } = \min\left\lbrace \lim\limits_{i⇝∞⁺} \dfrac{1/2^{2·i} }{1/3^{2·i+1} }, \lim\limits_{i⇝∞⁺} \dfrac{1/3^{2·i+1} }{1/2^{2·i+2} } \right\rbrace = \lim\limits_{i⇝∞⁺} \dfrac{2^{2·i+2} } {3^{2·i+1} } ⇝ 0$
$\varlimsup\limits_{j⇝∞⁺} \dfrac{ p_j }{ p_{j+1} } = \max\left\lbrace \lim\limits_{i⇝∞⁺} \dfrac{1/2^{2·i} }{1/3^{2·i+1} }, \lim\limits_{i⇝∞⁺} \dfrac{1/3^{2·i+1} }{1/2^{2·i+2} } \right\rbrace = \lim\limits_{i⇝∞⁺} \dfrac{3^{2·i+1} }{2^{2·i} } ⇝ ∞⁺$
$\varliminf\limits_{j⇝∞⁺} \dfrac{1}{\sqrt[j]{ p_j } } = \min\left\lbrace \lim\limits_{i⇝∞⁺} \sqrt[2·i]{2^{2·i} }, \lim\limits_{i⇝∞⁺} \sqrt[2·i+1]{3^{2·i+1} } \right\rbrace = \lim\limits_{i⇝∞⁺} \sqrt[2·i]{2^{2·i} } = 2 > 0$
$\varliminf\limits_{j⇝∞⁺} \dfrac{1}{\sqrt[j]{ p_j } } = \max\left\lbrace \lim\limits_{i⇝∞⁺} \sqrt[2·i]{2^{2·i} }, \lim\limits_{i⇝∞⁺} \sqrt[2·i+1]{3^{2·i+1} } \right\rbrace = \lim\limits_{i⇝∞⁺} \sqrt[2·i+1]{3^{2·i+1} } = 3 < ∞⁺$
幂级数在绝对收敛半径内区间$ x - x_0 < R$上,连续且有任意阶导数。
幂级数在绝对收敛半径内区间$ x - x_0 ≤ R_γ < R$上,可逐项积分且积分后绝对收敛半径不变,绝对收敛半径处的敛散性可能由发散变成收敛。
幂级数在绝对收敛半径内区间$ x - x_0 ≤ R_γ < R$上,可逐项求导且求导后绝对收敛半径不变,绝对收敛半径处的敛散性可能由收敛变成发散。

$\int\limits_{x_0}^{x} \mathrm{d} x · \lim\limits_{n⇝∞⁺} F_n (x) ≡ \int\limits_{x_0}^{x} \mathrm{d} x · \sum\limits_{i=0}^{∞⁺} p_i · (x - x_0)^i ≡ \sum\limits_{i=0}^{∞⁺} \int\limits_{x_0}^{x}\mathrm{d} x · p_i · (x - x_0)^i ≡ \lim\limits_{n⇝∞⁺} \int\limits_{x_0}^{x} \mathrm{d} x · F_n (x) ≡ \sum\limits_{i=0}^{∞⁺} \dfrac{p_i}{i + 1} · (x - x_0)^{i + 1}$

$\dfrac{\mathrm{d} }{\mathrm{d} x} \lim\limits_{n⇝∞⁺} F_n (x) ≡ \dfrac{\mathrm{d} }{\mathrm{d} x} \sum\limits_{i=0}^{∞⁺} [ p_i · (x - x_0)^i ] ≡ \sum\limits_{i=0}^{∞⁺} \dfrac{\mathrm{d} }{\mathrm{d} x} [ p_i · (x - x_0)^i] ≡ \lim\limits_{n⇝∞⁺} \dfrac{\mathrm{d} }{\mathrm{d} x} F_n (x) ≡ \sum\limits_{i=0}^{∞⁺} [ p_i · i · (x - x_0)^{i - 1} ]$

$\varliminf\limits_{n⇝∞⁺} \sqrt[i]{\left \dfrac{p_i}{i + 1} \right } = \dfrac{\varliminf\limits_{n⇝∞⁺} \sqrt[i]{ p_i } }{\varlimsup\limits_{n⇝∞⁺} \sqrt[i]{i + 1} } = R = \varliminf\limits_{n⇝∞⁺} \sqrt[i]{ p_i · i } = \varliminf\limits_{n⇝∞⁺} \sqrt[i]{ p_i } · \varliminf\limits_{n⇝∞⁺} \sqrt[i]{i} $

幂级数在绝对收敛半径$±R$处的敛散性不恒定。

典例:幂级数$\sum\limits_{i=0}^{∞⁺} (-x)^i = \dfrac{1}{1 + x}$的绝对收敛半径为$R = 1$。

$\lim\limits_{x⇝1^-} \sum\limits_{i=0}^{∞⁺} (-x)^i = \lim\limits_{x⇝1^-} \dfrac{1}{1 + x} ⇝ \dfrac{1}{2} \not⇜ \sum\limits_{i=0}^{∞⁺} (-1)^i = \sum\limits_{i=0}^{∞⁺} \lim\limits_{x⇝1^-} (-x)^i$

若幂级数在点$x_1 - x_0$处的绝对极限将收敛,则在点$x_1 - x_0$处绝对收敛为该极限。

$\left[ \lim\limits_{x⇝x_1} \sum\limits_{i=0}^{∞⁺} p_i · (x - x_0)^i ⇝ F_{ x_1 } \right] \mathop{⇒}\limits^{ x - x_0 x_1 - x_0 } \left[ \sum\limits_{i=0}^{∞⁺} p_i · (x_1 - x_0)^i ⇝ F_{ x_1 } \right]$
$F_{ x_1 } ⇜ \lim\limits_{x⇝x_1} \sum\limits_{i=0}^{∞⁺} p_i · x - x_0 ^i \mathop{≤}\limits^{ x - x_0 <≤ x_1 - x_0 } \sum\limits_{i=0}^{∞⁺} p_i · x_1 - x_0 ^i = \lim\limits_{n⇝∞⁺} \sum\limits_{i=0}^n \lim\limits_{x⇝x_1} p_i · x - x_0 ^i = \lim\limits_{n⇝∞⁺} \lim\limits_{x⇝x_1} \sum\limits_{i=0}^n p_i · x - x_0 ^i ≤ \rlap{≡≡≡} \lim\limits_{n⇝∞⁺} \lim\limits_{x⇝x_1} \sum\limits_{i=0}^{∞⁺} p_i · x - x_0 ^i ⇝ F_{ x_1 }$

幂级数的运算性质

同起点幂级数可做加运算,其绝对收敛半径至少为共同的绝对收敛半径。

同起点幂级数可做乘运算,其绝对收敛半径至少为各绝对收敛半径之积。

$\left[ \sum\limits_{i=0}^{∞⁺} p_i · (x - x_0)^i \right] ± \left[ \sum\limits_{j=0}^{∞⁺} q_j · (x - x_0)^j \right] \mathop{=======}\limits_{ x - x_0 <R_{pq} }^{R_{pq}≡\min\lbrace R_p, R_q \rbrace} \sum\limits_{l=0}^{∞⁺} (p_l ± q_l) · (x - x_0)^l$
$\left[ \sum\limits_{i=0}^{∞⁺} p_i · (x - x_0)^i \right] · \left[ \sum\limits_{j=0}^{∞⁺} q_j · (x - x_0)^j \right] \mathop{=====}\limits_{ x - x_0 < R_{pq} }^{R_{pq} ≡ R_p · R_q} \sum\limits_{l=0}^{∞⁺} \left[ \sum\limits_{k=0}^l p_k · q_{l-k} \right] · (x - x_0)^l$
$⇓$ $\dfrac{1}{R_{pq} } ≡ \dfrac{1}{\min\lbrace R_p, R_q \rbrace} = \max\left\lbrace \dfrac{1}{R_p}, \dfrac{1}{R_q} \right\rbrace = \max\left\lbrace \varlimsup\limits_{l⇝∞⁺} \sqrt[l]{ p_l }, \varlimsup\limits_{l⇝∞⁺} \sqrt[l]{ q_l } \right\rbrace = \varlimsup\limits_{l⇝∞⁺} \sqrt[l]{\max\lbrace p_l , q_l \rbrace}$                                    
$⇓$ $\dfrac{1}{R} ≡ \varlimsup\limits_{l⇝∞⁺} \sqrt[l]{ p_l ± q_l } ≤ \varlimsup\limits_{l⇝∞⁺} \sqrt[l]{ p_l + q_l } ≤ \varlimsup\limits_{l⇝∞⁺} \sqrt[l]{2 · \max\lbrace p_l , q_l \rbrace} = \varlimsup\limits_{l⇝∞⁺} \sqrt[l]{\max\lbrace p_l , q_l \rbrace} = \dfrac{1}{R_{pq} }$ $⇒$ $R_{pq} ≤ \dfrac{1}{\varlimsup\limits_{l⇝∞⁺} \sqrt[l]{ p_l ± q_l } } ≡ R$                
$⇓$ $\dfrac{1}{R_{pq} } = \varlimsup\limits_{l⇝∞⁺} \sqrt[l]{\max\lbrace p_l , q_l \rbrace} ≤ \varlimsup\limits_{l⇝∞⁺} \sqrt[l]{ p_l + q_l } \mathop{=====}\limits^{0 ≤ ± · p_l · q_l} \varlimsup\limits_{l⇝∞⁺} \sqrt[l]{ p_l ± q_l } ≡ \dfrac{1}{R}$ $⇒$ $R_{pq} \mathop{=====}\limits^{0 ≤ ± · p_l · q_l} R$                            
$⇓$ $\left \dfrac{1}{R_p} - \dfrac{1}{R_q} \right = \left \varlimsup\limits_{l⇝∞⁺} \sqrt[l]{ p_l } - \varlimsup\limits_{l⇝∞⁺} \sqrt[l]{ q_l } \right ≤ \varlimsup\limits_{l⇝∞⁺} \left \sqrt[l]{ p_l } - \sqrt[l]{ q_l } \right ≤ \varlimsup\limits_{l⇝∞⁺} \sqrt[l]{   p_l - q_l   } ≤ \varlimsup\limits_{l⇝∞⁺} \sqrt[l]{ p_l ± q_l } ≡ \dfrac{1}{R}$ $⇒$ $R_{pq} ≤ R ≤ \dfrac{R_p · R_q}{ R_p - R_q } \mathop{========}\limits^{\max\lbrace R_p, R_q \rbrace = ∞⁺} R_{pq}$
$⇓$ $\left[ \lim\limits_{n⇝∞^{+} } s_n · t_n \mathop{⇝}\limits_{\lim\limits_{n⇝∞^{+} } t_n ⇝ t,∞^{±} }^{\lim\limits_{n⇝∞^{+} } s_n ⇝ s,∞^{±} } r,∞^{±} \right] ⇒ \left[ \lim\limits_{n⇝∞^{+} } \dfrac{1}{n + 1} · \sum\limits_{i=0}^{n} s_i · t_{n-i} ⇝ r,∞^{±} \right]$   $\lim\limits_{n⇜∞^{+} } \sqrt[l+1]{l + 1} ⇝ 1$                            
$⇓$ $\dfrac{1}{R} ≡ \varlimsup\limits_{l⇝∞⁺} \sqrt[l+1]{\left \sum\limits_{k=0}^l p_k · q_{l-k} \right } ≤ \varlimsup\limits_{l⇝∞⁺} \sqrt[l+1]{\sum\limits_{k=0}^l p_k · q_{l-k} } = \varlimsup\limits_{l⇝∞⁺} \sqrt[l+1]{l + 1} · \varlimsup\limits_{l⇝∞⁺} \sqrt[l+1]{\dfrac{1}{l + 1} · \sum\limits_{k=0}^l p_k · q_{l-k} } = \varlimsup\limits_{l⇝∞⁺} \sqrt[l+1]{ p_l · q_l } ⇝ \dfrac{1}{R_p · R_q}$ $⇒$ $R_p · R_q ≤ R$
$⇓$ $\dfrac{1}{R_p · R_q} = \varlimsup\limits_{l⇝∞⁺} \sqrt[l]{\sum\limits_{k=0}^l p_k · q_{l-k} } \mathop{===}\limits_{q_j⪌0}^{p_i⪌0} \varlimsup\limits_{l⇝∞⁺} \sqrt[l]{\left \sum\limits_{k=0}^l p_k · q_{l-k} \right } ≡ \dfrac{1}{R}$ $⇒$ $R_p · R_q \mathop{===}\limits_{q_j⪌0}^{p_i⪌0} R$                
附加证明:$   p_l ^{\frac{1}{l} } - q_l ^{\frac{1}{l} }   p_l - q_l   ^\frac{1}{l}$
$⇓$ $ x + y ≤ ( x ^\frac{1}{l} + y ^{\frac{1}{l} })^l$        
$⇓$ $( x + y )^\frac{1}{l} ≤ x ^\frac{1}{l} + y ^{\frac{1}{l} }$        
$⇓$ $ x ^{\frac{1}{l} } ≤   x - y   ^{\frac{1}{l} } + y ^{\frac{1}{l} }$    
$⇓$ $   x ^{\frac{1}{l} } - y ^{\frac{1}{l} }   x - y   ^\frac{1}{l}$

同起点幂级数与等比级数之积,其绝对收敛半径至少为原幂级数的绝对收敛半径。

$\dfrac{1}{1 - (x - x_0)} · \sum\limits_{i=0}^{∞⁺} p_i · (x - x_0)^i = \sum\limits_{j=0}^{∞⁺} (x - x_0)^j · \sum\limits_{i=0}^{∞⁺} p_i · (x - x_0)^i = \sum\limits_{l=0}^{∞⁺} \left[ \sum\limits_{k=0}^l p_k \right] · (x - x_0)^l = \sum\limits_{l=0}^{∞⁺} P_l · (x - x_0)^l$

幂级数的无穷阶展开

若函数$f (x)$在点$x = x_0$处连续且有无穷阶导数,则在点$x = x_0$处可唯一展开成无穷阶幂级数。

若函数$f (x)$在点$x = x_0$处展开成无穷阶幂级数,则在点$x = x_0$处收敛于自身,但在点$x ≠ x_0$处未必收敛或未必收敛于自身。

$f (x) = \lim\limits_{n⇝∞⁺} \left[ \sum\limits_{i=0}^n \dfrac{ {^i}f (x_0)}{i!} · (x - x_0)^i = f (x_0) + \dfrac{ {^1}f (x_0)}{1!} · (x - x_0)^1 + \dfrac{ {^2}f (x_0)}{2!} · (x - x_0)^2 + ··· + \dfrac{ {^n}f (x_0)}{n!} · (x - x_0)^n + R_n (x) \right]$

$f (x) = \lim\limits_{n⇝∞⁺} \left[ \sum\limits_{i=0}^n \left.\dfrac{\mathrm{d}^i f (x)}{i! · \mathrm{d}^i x}\right _{x_0} · (x - x_0)^i = f (x_0) + \left.\dfrac{\mathrm{d}^1 f (x)}{1! · \mathrm{d}^1 x}\right _{x_0} · (x - x_0)^1 + \left.\dfrac{\mathrm{d}^2 f (x)}{2! · \mathrm{d}^2 x}\right _{x_0} · (x - x_0)^2 + ··· + \left.\dfrac{\mathrm{d}^n f (x)}{n! · \mathrm{d}^n x}\right _{x_0} · (x - x_0)^n + R_n (x) \right]$
$f (x) = \lim\limits_{n⇝∞⁺} \left[ \sum\limits_{i=0}^n \left.\dfrac{\mathrm{d}^i f (x)}{\mathrm{d} x^i}\right _{x_0} · (x - x_0)^i = f (x_0) + \left.\dfrac{\mathrm{d}^1 f (x)}{\mathrm{d} x^1}\right _{x_0} · (x - x_0)^1 + \left.\dfrac{\mathrm{d}^2 f (x)}{\mathrm{d} x^2}\right _{x_0} · (x - x_0)^2 + ··· + \left.\dfrac{\mathrm{d}^n f (x)}{\mathrm{d} x^n}\right _{x_0} · (x - x_0)^n + R_n (x) \right]$

$R_n (x) = o (x - x_0)^n = f (x) - f (x_0) - \sum\limits_{i=1}^n \dfrac{ {^i}f (x_0)}{i!} · (x - x_0)^i \mathop{====}\limits_{∃θ∈[x_0, x]} \dfrac{ {^{n+1} }f (θ)}{(n + 1)!} · (x - x_0)^{n + 1} \mathop{====}\limits_{∃θ∈[x_0, x]} \dfrac{ {^{n+1}f (θ)} }{n!} · (x - θ)^n · (x - x_0)^1 \mathop{====}\limits_{∃θ∈[x_0, x]} \int\limits_{x_0}^x \dfrac{ {^{n+1} }f (t)}{n!} · (x - t)^n \mathrm{d} t$

$[ R_n (x_0) = 0 ] ⇒ [ f (x) _{x_0} = f (x_0) ]$

有函数$f (x)$在点$x = x_0$处展开成无穷阶幂级数,若在点$x ≠ x_0$处收敛于自身,则在点$x ≠ x_0$处余项$R_n (x)$的极限为零,反之亦然。

$\left[ f (x) = \sum\limits_{i=0}^{∞⁺} \dfrac{ {^i}f (x_0)}{i!} · (x - x_0)^i \right] ⇔ \left[ \lim\limits_{n⇝∞⁺} R_n (x) ⇝ 0 \right]$

有函数$f (x)$在点$x = x_0$处展开成无穷阶幂级数,若在区间$[±x_0, x_1]$内各阶导数有确界,则在区间$[+x_0, x_1]$内收敛于自身,反之不对。

$\left[ {^i}f (θ) ≤ \mathrm{Sup.} \right] ⇒ \left[ \lim\limits_{n⇝∞⁺} R_n (x) \mathop{====}\limits_{∃θ∈[x_0, x]} \lim\limits_{n⇝∞⁺} \left \dfrac{ {^{n+1} }f (θ)}{(n + 1)!} · (x - x_0)^{n + 1} \right ≤ \lim\limits_{n⇝∞⁺} \mathrm{Sup.} · \dfrac{ (x - x_0)^{n + 1} }{(n + 1)!} ⇝ 0 \right]$

有函数$f (x)$在点$x = x_0$处展开成无穷阶幂级数,若在区间$[+x_0, x_1]$内各阶导数非负数,则在区间$[+x_0, x_1)$内收敛于自身,反之不对。

$⇓$ $f (x) = \lim\limits_{n⇝∞⁺} \left[ \sum\limits_{i=0}^n \dfrac{ {^i}f (x_0)}{i!} · (x - x_0)^i + R_n (x) \right]$ $⇒$ $\left[ 0 ≤ {^i} f (x) \right] \mathop{⇒}\limits_{x∈[+x_0, x_1]} [ R_n (x) ≤ f (x)]$
$⇓$ $\dfrac{R_n (x)}{(x - x_0)^{n + 1} } = \dfrac{ {^{n+1} }f (x_0)}{(n + 1)!} + \dfrac{ {^{n+2} }f (x_0)}{(n + 2)!} · (x - x_0)^{1} + \dfrac{ {^{n+3} }f (x_0)}{(n + 3)!} · (x - x_0)^2 + T_{n+3} (x)$ $⇒$ $g (x) ≡ \dfrac{\mathrm{d} }{\mathrm{d} x} \left[ \dfrac{R_n (x)}{(x - x_0)^{n + 1} } \right] = g (x_0) + \dfrac{ {^1}g (θ)}{1!} · (x - x_0)^1$
$⇓$ $g (x) = \dfrac{\mathrm{d} }{\mathrm{d} x} \left[ \dfrac{R_n (x)}{(x - x_0)^{n + 1} } \right] \mathop{=====}\limits_{x∈[+x_0, x_1]}^{θ∈[+x_0, x]} \dfrac{ {^{n+2} }f (x_0)}{(n + 2)!} + \left[ \dfrac{ {^{n+3} }f (x_0)}{(n + 3)!} · 2 + {^2}T_{n+3} (θ) \right] · (x - x_0)^1 ≥ 0$ $⇐$ ${^1}g (x) = \dfrac{ {^{n+3} }f (x_0)}{(n + 3)!} · 2 + {^2}T_{n+3} (x) ≥ 0$
$⇓$ $\dfrac{R_n (x)}{(x - x_0)^{n + 1} } ≤ \dfrac{R_n (x_1)}{(x_1 - x_0)^{n + 1} } ≤ \dfrac{f (x_1)}{(x_1 - x_0)^{n + 1} }$    
$⇓$ $\lim\limits_{n⇝∞⁺} R_n (x) ≤ \lim\limits_{n⇝∞⁺} \left[ \dfrac{x - x_0}{x_1 - x_0} \right]^{n + 1} · f (x_1) \mathop{⇝}\limits_{x∈[+x_0, x_1)} 0$ $⇐$ $\dfrac{x - x_0}{x_1 - x_0} \mathop{<}\limits_{x∈[+x_0, x_1)} 1$
无穷阶幂级数$f (x) = \sum\limits_{i=0}^{∞⁺} \left. \dfrac{\mathrm{d}^i f (x)}{i! · \mathrm{d}^i x} \right {x_0} · (x - x_0)^i$,在绝对收敛半径$R{x_0}$内点$x = x_1$处可唯一展开成无穷阶幂级数,其绝对收敛半径至少为$R_{x_1} = R_{x_0} - x_1 - x_0 $。
$⇓$ $ x - x_0 = x - x_1 + x_1 - x_0 x - x_1 + x_1 - x_0 ≤ R_{x_0} $ $⇔$ $ x - x_1 ≤ R_{x_0} - x_1 - x_0 = R_{x_1}$
$⇓$ $f_{x_0} (x) \mathop{=====}\limits_{ x-x_1 ≤R_{x_1} } \sum\limits_{i=0}^{∞⁺} \left. \dfrac{\mathrm{d}^i f (x)}{i! · \mathrm{d}^i x} \right {x_0} · (x - x_0)^i = \sum\limits{i=0}^{∞⁺} \left. \dfrac{\mathrm{d}^i f (x)}{i! · \mathrm{d}^i x} \right _{x_0} · [(x - x_1) + (x_1 - x_0)]^i$                    
$⇓$ $f_{x_0} (x) \mathop{=====}\limits_{ x-x_1 ≤R_{x_1} } \sum\limits_{i=0}^{∞⁺} \left[ \left. \dfrac{\mathrm{d}^{i-j} }{i! · \mathrm{d}^{i-j} x} \dfrac{\mathrm{d}^j f (x)}{\mathrm{d}^j x} \right {x_0} · \sum\limits{j=0}^{i} \dfrac{i!}{j! · (i - j)!} · (x - x_1)^j · (x_1 - x_0)^{i - j} \right]$                      
$⇓$ $f_{x_1} (x) \mathop{=====}\limits_{ x-x_1 ≤R_{x_1} } \sum\limits_{j=0}^{∞⁺} \dfrac{1}{j!} · \left[ \sum\limits_{i=j}^{∞⁺} \dfrac{\mathrm{d}^{i-j} }{(i - j)! · \mathrm{d}^{i-j} x} \left. \dfrac{\mathrm{d}^j f (x)}{\mathrm{d}^j x} \right _{x_0} · (x_1 - x_0)^{i-j} \right] · (x - x_1)^j$                      
$⇓$ $f_{x_1} (x) \mathop{=====}\limits_{ x-x_1 ≤R_{x_1} } \sum\limits_{j=0}^{∞⁺} \dfrac{1}{j!} · \left[ \sum\limits_{i=0}^{∞⁺} \dfrac{\mathrm{d}^{i} }{i! · \mathrm{d}^i x} \left. \dfrac{\mathrm{d}^j f (x)}{\mathrm{d}^j x} \right _{x_0} · (x_1 - x_0)^{i} \right] · (x - x_1)^j$                      
$⇓$ $f_{x_1} (x) \mathop{=====}\limits_{ x-x_1 ≤R_{x_1} } \sum\limits_{j=0}^{∞⁺} \left. \dfrac{\mathrm{d}^j f (x)}{j! · \mathrm{d}^j x} \right _{x_1} · (x - x_1)^j$                      

典例:函数$F (x) = \dfrac{1}{1 - x} = \sum\limits_{i=0}^{∞⁺} x^i$在点$x_0=0$处连续且有无穷阶导数。其在点$x_0=0$处展开的无穷阶幂级数在绝对发散半径$\overline{R} = 1$外条件发散。

典例:函数$F (x) = \sum\limits_{i=0}^{∞⁺} \dfrac{\sin 2^i · x}{i!}$在点$x_0 = 0$处连续且有无穷阶导数。其在点$x_0 = 0$处展开的无穷阶幂级数收敛于自身,但在点$x ≠ 0$处条件发散。

$⇓$ $\left[ \left \dfrac{\sin 2^i · x}{i!} \right \mathop{≤}\limits_{x∈(∞⁻, ∞⁺)} \dfrac{1}{i!} \mathop{<}\limits_{i⇝∞⁺} \dfrac{1}{2^i} \right] ⇒ \left[ \sum\limits_{i=0}^{∞⁺} \left \dfrac{\sin 2^i · x}{i!} \right \mathop{↭}\limits_{x∈(∞⁻, ∞⁺)} F_{   } (x) \right]$  
$⇓$ $\dfrac{\mathrm{d}^j F (x)}{\mathrm{d}^j x} = \sum\limits_{i=0}^{∞⁺} \dfrac{\mathrm{d}^j}{\mathrm{d}^j x} \left[ \dfrac{\sin 2^i · x}{i!} \right] = \sum\limits_{i=0}^{∞⁺} \dfrac{(2^i)^j · \sin \left( 2^i · x + j · \dfrac{π}{2} \right)}{i!}$              
$⇓$ $\left. \dfrac{\mathrm{d}^j F (x)}{j! · \mathrm{d}^j x} \right {x_0=0} \mathop{====}\limits{j = 2 · k + 1}^{\rlap{≡≡≡}{j = 2 · k} } \sum\limits_{i=0}^{∞⁺} \dfrac{(2^i)^{2 · k +1} · \sin \left( k · π + \dfrac{π}{2} \right)}{(2 · k + 1)! · i!} = \sum\limits_{i=0}^{∞⁺} \dfrac{(-1)^k}{(2 · k + 1)!} · \dfrac{(2^{2 · k + 1})^i}{i!} = \dfrac{(-1)^k}{(2 · k + 1)!} · ә^{2^{2 · k + 1} }$ $\left. \dfrac{\mathrm{d}^j F (x)}{j! · \mathrm{d}^j x} \right {x_0} \mathop{===}\limits^{j=2·k} \sum\limits{i=0}^{∞⁺} \dfrac{(2^i)^{2 · k} · \sin\left( k · π \right)}{(2 · k)! · i!} = 0$        
$⇓$ $F (x) = \sum\limits_{j=2·k+1 \ k=0}^{∞⁺} \dfrac{(-1)^k · ә^{2^{2 · k + 1} } }{(2 · k + 1)!} · x^{2 · k + 1}$              
$⇓$ $\overline{R}= \varlimsup\limits_{j=2·k+1 \ k⇝∞⁺} \dfrac{1}{\sqrt[j]{ p_j } } ≤ \varlimsup\limits_{j=2·k+1 \ k⇝∞⁺} \left \dfrac{p_j}{p_{j+2} } \right = \lim\limits_{k⇝∞⁺} \dfrac{ә^{2^{2 · k + 1} } }{(2 · k + 1)!} · \dfrac{(2 · k + 3)!}{ә^{2^{2 · k + 3} } } = \lim\limits_{k⇝∞⁺} \dfrac{(2 · k + 2) · (2 · k + 3)}{ә^{3·2^{2·k+1} } } ⇝ 0$      

典例:函数$f (x) = \mathop{0}\limits_{x≤0}; \mathop{ә^{-x^{-1} } }\limits_{0<x}$在点$x_0 = 0$处连续且有无穷阶导数。其在点$x_0=0$处展开的无穷阶幂级数收敛于自身,但在点$x ≠ 0$处不收敛于自身。

$⇓$ $\lim\limits_{x⇝0^+} f (x) = \lim\limits_{x=t^{-1} \ t⇝∞⁺} \dfrac{1}{ә^{t} } ⇝ 0 ⇜ \lim\limits_{x⇝0^-} 0 = \lim\limits_{x⇝0^-} f (x)$ $⇒$ $\lim\limits_{x⇝0} f (x) = 0$    
$⇓$ $\dfrac{\mathrm{d}^0 f (x)}{\mathrm{d}^0 x} \mathop{==}\limits_{0<x} f (x) = ә^{-x^{-1} } · 1 = ә^{-x^{-1} } · 𝓟_0 (x^{-1})$ $⇒$ $\lim\limits_{x⇝0^+} \dfrac{\mathrm{d}^0 f (x)}{\mathrm{d}^0 x} ⇝ 0 ⇜ \lim\limits_{x⇝0^-} 0 = \lim\limits_{x⇝0^-} \dfrac{\mathrm{d}^0 f (x)}{\mathrm{d}^0 x}$    
$⇓$ $\dfrac{\mathrm{d}^1 f (x)}{\mathrm{d}^1 x} \mathop{==}\limits_{0<x} \dfrac{\mathrm{d} }{\mathrm{d} x} \left[ ә^{-x^{-1} } · 𝓟_0 (x^{-1}) \right] = ә^{-x^{-1} } · \left[ \dfrac{1}{x^2} · 𝓟_0 (x^{-1}) + \dfrac{\mathrm{d} }{\mathrm{d} x} 𝓟_0 (x^{-1}) \right] = ә^{-x^{-1} } · 𝓟_2 (x^{-1})$ $⇐$ $\dfrac{\mathrm{d} 𝓟_0 (x^{-1})}{\mathrm{d} x} = \left.\dfrac{\mathrm{d} 𝓟_0 (y)}{\mathrm{d} y}\right _{x^{-1} } · \dfrac{-1}{x^2} = 0$  
$⇓$ $\dfrac{\mathrm{d}^2 f (x)}{\mathrm{d}^2 x} \mathop{==}\limits_{0<x} \dfrac{\mathrm{d} }{\mathrm{d} x} \left[ ә^{-x^{-1} } · 𝓟_2 (x^{-1}) \right] = ә^{-x^{-1} } · \left[ \dfrac{1}{x^2} · 𝓟_2 (x^{-1}) + \dfrac{\mathrm{d} }{\mathrm{d} x} 𝓟_2 (x^{-1}) \right] = ә^{-x^{-1} } · 𝓟_4 (x^{-1})$ $⇐$ $\dfrac{\mathrm{d} 𝓟_2 (x^{-1})}{\mathrm{d} x} = \left.\dfrac{\mathrm{d} 𝓟_2 (y)}{\mathrm{d} y}\right _{x^{-1} } · \dfrac{-1}{x^2} = 𝓟_3 (x^{-1})$  
  $···$   $···$    
$⇓$ $\dfrac{\mathrm{d}^i f (x)}{\mathrm{d}^i x} \mathop{==}\limits_{0<x} \dfrac{\mathrm{d} }{\mathrm{d} x} \left[ ә^{-x^{-1} } · 𝓟_{2 · i - 2} (x^{-1}) \right] = ә^{-x^{-1} } · \left[ \dfrac{1}{x^2} · 𝓟_{2 · i - 2} (x^{-1}) + \dfrac{\mathrm{d} }{\mathrm{d} x} 𝓟_{2 · i - 2} (x^{-1}) \right] = ә^{-x^{-1} } · 𝓟_{2 · i} (x^{-1})$ $⇐$ $\dfrac{\mathrm{d} 𝓟_{2 · i - 2} (x^{-1})}{\mathrm{d} x} = \left.\dfrac{\mathrm{d} 𝓟_{2 · i - 2} (y)}{\mathrm{d} y} \right {x^{-1} } · \dfrac{-1}{x^2} = 𝓟{2 · i - 1} (x^{-1})$  
$⇓$ $\lim\limits_{i⇝∞⁺} \lim\limits_{x⇝0^+} \dfrac{\mathrm{d}^i f (x)}{i! · \mathrm{d}^i x} = \lim\limits_{i⇝∞⁺} \lim\limits_{x=t^{-1} \ t⇝∞⁺} \dfrac{𝓟_{2 · i} (t)}{i! · ә^{t} } ⇝ 0 ⇜ \lim\limits_{x=t^{-1} \ t⇝∞⁺} \lim\limits_{i⇝∞⁺} \dfrac{𝓟_{2 · i} (t)}{i! · ә^{t} } = \lim\limits_{x⇝0^+} \lim\limits_{i⇝∞⁺} \dfrac{\mathrm{d}^i f (x)}{i! · \mathrm{d}^i x}$ $⇒$ \(\lim\limits_{x⇝0^+} \dfrac{\mathrm{d}^i f (x)}{i! · \mathrm{d}^i x} ⇝ 0 ⇜ \lim\limits_{x⇝0^-} 0 = \lim\limits_{x⇝0^-} \dfrac{\mathrm{d}^i f (x)}{i! · \mathrm{d}^i x}\)    
$⇓$ $f (x) = \sum\limits_{i=0}^{∞⁺} \left. \dfrac{\mathrm{d}^i f (x)}{i! · \mathrm{d}^i x} \right {x_0=0} · x^i = 0 \mathop{≠}\limits{x∈(0, ∞⁺)} ә^{-x^{-1} }$ $⇐$ $\left. \dfrac{\mathrm{d}^i f (x)}{i! · \mathrm{d}^i x} \right _{x_0=0} = 0$

多项式一致逼近

对于区间$[α, β]$上的函数$f (x)$可用多项式函数$P_n (x)$一致逼近,等同于多项式函数$P_n (x)$一致收敛于函数$f (x)$。

$\left[ ∀ε>0;∃N∈ℕ;∀n≥N; \sup\limits_{x∈X} P_n (x) - f (x) ≤ ε \right] ⇔ [ ∀ε>0;∃N∈ℕ;∀n≥N;∀x∈X; P_n (x) - f (x) < ε ]$
$\left[ \lim\limits_{n⇝∞⁺} P_n (x) \mathop{↭}\limits_{x∈X} f (x) \right] ⇔ \left[ \lim\limits_{n⇝∞⁺} P_n (x) - f (x) \mathop{↭}\limits_{x∈X} 0 \right] ⇔ \left[ \lim\limits_{n⇝∞⁺} \sup\limits_{x∈X} P_n (x) - f (x) ⇝ 0 \right]$

若区间$[α, β]$上的函数$f (x)$可展开成条件收敛的无穷阶幂级数,则函数$f (x)$可用多项式函数$P_n (X)$一致逼近。

$\left[ f (x) = \lim\limits_{n⇝∞⁺} \sum\limits_{i=0}^n p_i · (x - x_0)^i \right] ⇒ \left[ P_n (x) ≡ \sum\limits_{i=0}^n p_i · (x - x_0)^i \right]$

若区间$(∞⁻, β]$上以及区间$[α, ∞⁺)$上的函数$f (x)$可用多项式函数$P_n (x)$一致逼近,则函数$f (x)$为多项式函数。

$⇓$ $\lim\limits_{n⇝∞⁺} P_n (x) \mathop{↭}\limits_{x∈[α, ∞⁺)} f (x)$            
$⇓$ $\lim\limits_{n⇝∞⁺} \sup\limits_{x∈[α, ∞⁺)} 𝓟_{n-N} (x) = \lim\limits_{n⇝∞⁺} \lim\limits_{x⇝∞⁺} 𝓟_{n-N} (x) ⇝ 0$ $⇐$ $𝓟_{n-N} (x) ≡ P_n (x) - P_N (x)$
$⇓$ $𝓟_{n-N} (x) ≡ \mathrm{Con.} = 0$ $⇐$ $[ 𝓟_{n-N} (x) \not≡ \mathrm{Con.}] ⇒ \left[ \lim\limits_{n⇝∞⁺} \lim\limits_{x⇝∞⁺} 𝓟_{n-N} (x) ⇝ ∞⁺ \right]$    
$⇓$ $f (x) = \lim\limits_{n⇝∞⁺} P_n (x) = \lim\limits_{n⇝∞⁺} [ P_N (x) + 𝓟_{n-N} (x) ] = P_N (x)$            

若区间$[α, β]$上的函数$f (x)$可用多项式函数$P_n (x)$一致逼近,则函数$f (x)$为连续函数,反之亦然。多项式函数$P_n (x)$本身为连续函数。

反例:连续函数$f (x) = \dfrac{1}{x}$,在区间$(0^+, +1]$以及区间$[1, ∞⁺)$上不可用多项式函数$P_n (x)$一致逼近。

连续函数$f (x) = \dfrac{1}{x}$在区间$(0^+, +1]$上无确界非一致连续,但是多项式函数$P_n (x)$在区间$(0^+, +1]$上有确界且一致连续。

连续函数$f (x) = \dfrac{1}{x}$在区间$[1, ∞⁺)$上有确界且一致连续,但是多项式函数$P_n (x)$在区间$[1, ∞⁺)$上无确界且一致连续。

若区间$[α, β]$上的函数$f (x)$可积分,则存在多项式函数$P (x)$,使得$\int\limits_{α}^{β} P (x) - f (x) \mathrm{d} x = 0$。
$⇓$ $\left[ \int\limits_{α}^{β} f (x) \mathrm{d} x = I \right] ⇒ \left[ \lim\limits_{n⇝∞⁺}^{∆x_i⇝0} \sum\limits_{i=0}^n \sup\limits_{u,v∈[x_{i+0}, x_{i+1}]} f (u) - f (v) · ∆x_i = \lim\limits_{n⇝∞⁺}^{∆x_i⇝0} \sum\limits_{i=0}^n w_i · ∆x_i ⇝ 0 \right]$ $⇐$ $w_i = \sup\limits_{u,v∈[x_i, x_{i+1}]} f (u) - f (v) $    
$⇓$ $0 = \left \begin{matrix} 1 & 1 & 1 \ x_{i} & x & x_{i+1} \ f (x_{i}) & g (x) & f (x_{i+1}) \end{matrix}\right = \left \begin{matrix} 1 & 0 & 0 \ x_{i} & x - x_{i} & x_{i+1} - x_{i} \ f (x_{i}) & g (x) - f (x_{i}) & f (x_{i+1}) - f (x_{i+0}) \end{matrix}\right $ $⇒$ $0 = (x - x_{i}) · [f (x_{i+1}) - f (x_{i})] - (x_{i+1} - x_{i}) · [g (x) - f (x_{i})]$    
$⇓$ $g (x) \mathop{≡≡≡≡≡}\limits_{x_i≤x≤x_{i+1} } \dfrac{x - x_{i} }{x_{i+1} - x_{i} } · [f (x_{i+1}) - f (x_{i})] + f (x_{i})$ $⇒$ $g (x_i) = f (x_i), g (x_{i+1}) = f (x_{i+1})$            
$⇓$ $g (x) - f (x) \mathop{=====}\limits_{x_i≤x≤x_{i+1} } \dfrac{x_{i+1} - x}{x_{i+1} - x_{i} } · [ f (x_i) - f (x) ] + \dfrac{x - x_i}{x_{i+1} - x_i} · [ f (x_{i+1}) - f (x) ]$ $⇒$ $ g (x) - f (x) ≤ \dfrac{x_{i+1} - x}{x_{i+1} - x_i} · w_i + \dfrac{x - x_i}{x_{i+1} - x_i} · w_i = w_i$        
$⇓$ $\int\limits_{α}^{β} g (x) - f (x) \mathrm{d} x \mathop{====}\limits_{x_{n+1}=β}^{x_0=α} \lim\limits_{n⇝∞⁺}^{∆x_i⇝0} \sum\limits_{i=0}^n g_n (θ_i) - f (θ_i) · Δx_i ≤ \lim\limits_{n⇝∞⁺}^{∆x_i⇝0} \sum\limits_{i=0}^n w_i · Δx_i ⇝ 0$        
$⇓$ $\int\limits_{α}^{β} P (x) - f (x) \mathrm{d} x ≤ \int\limits_{α}^{β} P (x) - g (x) \mathrm{d} x + \int\limits_{α}^{β} g (x) - f (x) \mathrm{d} x ≤ ε_1 · (β - α) + ε_2 = ε ⇝ 0$ $⇐$ $\left[ P_n (x) \mathop{↭}\limits_{x∈[α, β]} g_n (x) \right] ∧ \left[ \lim\limits_{n⇝∞⁺} P_n (x) ⇝ P (x) \right]$

构造性多项式一致逼近

步骤一:[积分]构造性多项式函数在闭区间 $[0, 1]$上一致逼近连续函数$f (x)$,$f (x) \mathop{===}\limits_{x∉[0, 1]} f (0) = f (1) = 0$。

$⇓$ $\int\limits_{-1}^{+1} (1 - t^2)^n \mathrm{d} t ≥ \int\limits_{-1}^{+1} (1 - n · t^2) \mathrm{d} t = \left[ t - \dfrac{n}{3} · t^3 \right]_{-1}^{+1} = 2$                
$⇓$ $\left[ 0 ≤ Q_n (-t) = Q_n (t) \mathop{≡}\limits_{t∈[-1, +1]} \dfrac{(1 - t^2)^n}{\int\limits_{-1}^{+1} (1 - t^2)^n \mathrm{d} t} ≤ \dfrac{(1 - t^2)^n}{2} \right] ⇒ \left[ f (x) = f (x) · \dfrac{\int\limits_{-1}^{+1} (1 - t^2)^n \mathrm{d} t}{\int\limits_{-1}^{+1} (1 - t^2)^n \mathrm{d} t} = \int\limits_{-1}^{+1} f (x) · Q_n (t) \mathrm{d} t \right]$                
$⇓$ $\left[ P_n (x) ≡ \int\limits_{-1}^{+1} f (x + t) · Q_n (t) \mathrm{d} t \mathop{===}\limits_{\mathrm{d} u = \mathrm{d} t}^{u = x + t} \int\limits_{x-1}^{x+1} f (u) · Q_n (u - x) \mathrm{d} u \mathop{=====}\limits_{-1≤x-1≤0}^{1≤x+1≤2} \int\limits_{0}^{1} f (u) · Q_n (u - x) \mathrm{d} u \right] ⇒ \left[ P_n (x) - f (x) ≤ \int\limits_{-1}^{+1} f (x + t) - f (x) · Q_n (t) \mathrm{d} t \right]$    
$⇓$ $[ ∀ε>0;∃δ>0; t = (x + t) - x < δ \mathop{⇒}\limits_{x,y∈[-1, +1]} f (x + t) - f (x) < ε ] ∧ \left[ f (x) - f (y) \mathop{≤}\limits_{x,y∈[0, 1]} \mathrm{Sup.} ≡ \sup\limits_{x∈[0, 1]} f (x) - \inf\limits_{x∈[0, 1]} f (x) \right]$
$⇓$ $\lim\limits_{n⇝∞⁺} P_n (x) - f (x) ≤ \lim\limits_{n⇝∞⁺} \left[ 2 · \mathrm{Sup.} · \int\limits_{+δ}^{+1} Q_n (t) \mathrm{d} t + 2 · ε · \int\limits_{0}^{+δ} Q_n (t) \mathrm{d} t \right] ≤ \lim\limits_{n⇝∞⁺} \left[ 2 · \mathrm{Sup.} · \dfrac{(1 - δ^2)^n}{2} · 1 + 2 · ε · \dfrac{(1 - 0^2)^n}{2} · 1 \right] \mathop{⇝}\limits^{ε⇝0^+} 0$            
$⇓$ $\lim\limits_{n⇝∞⁺} P_n (x) \mathop{↭}\limits_{x∈[0, 1]} f (x)$                

步骤二:[积分]构造性多项式函数在闭区间$[0, 1]$上一致逼近连续函数$g (x)$,$f (x) \mathop{=}\limits_{x∈[0, 1]} x · [ g (1) - g (0) ] - [ g (x) - g (0) ]$,$f (x) \mathop{=}\limits_{x∉[0, 1]} f (0) = f (1) = 0$。

$\left[ \lim\limits_{n⇝∞⁺} P_n (x) \mathop{↭}\limits_{x∈[0, 1]} f (x) = x · [ g (1) - g (0) ] - [ g (x) - g (0) ] \right] ⇔ \left[ \lim\limits_{n⇝∞⁺} x · [ g (1) - g (0)] + g (0) -P_n (x) \mathop{↭}\limits_{x∈[0, 1]} g (x) ] \right]$

步骤三:[积分]构造性多项式函数在闭区间$[α, β]$上一致逼近连续函数$h (y)$,$y = α + x · (β - α), x = \dfrac{y - α}{β - α}$。

$\left[ \lim\limits_{n⇝∞⁺} P_n (x) \mathop{↭}\limits_{x∈[0, 1]} g (x) \mathop{=}\limits_{x∈[0, 1]} h (y) \mathop{=}\limits_{y∈[α, β]} h [α + x · (β - α)] \right] ⇔ \left[ \lim\limits_{n⇝∞⁺} P_n \left( \dfrac{y - α}{β - α} \right) \mathop{↭}\limits_{x∈[0, 1]} h (y) \right]$

附加证明:$(1 - t^2)^n \mathop{≥}\limits_{-1≤t≤1} (1 - n · t^2)$。

$⇓$ $g (x) ≡ (1 - t^2)^n - (1 - n · t^2)$    
$⇓$ $\dfrac{\mathrm{d} }{\mathrm{d} x} g (x) = n · (1 - t^2)^{n - 1} · (-2 · t) + 2 · n · t = 2 · n · t · [ 1 - (1 - t^2)^{n - 1} ]$ $⇒$ $\dfrac{\mathrm{d} }{\mathrm{d} x} g (x) ≈ \mathop{<0}\limits_{-1≤x<0}; \mathop{=0}\limits_{x=0};\mathop{>0}\limits_{0<x≤+1};$
$⇓$ $g (x) \mathop{≥}\limits_{-1≤x≤+1} g (0) = 0$ $⇒$ $(1 - t^2)^n \mathop{≥}\limits_{-1≤x≤+1} (1 - n · t^2)$

步骤一:[离散]构造性多项式函数在闭区间$[0, 1]$上一致逼近连续函数$f (x)$,$f (x) \mathop{===}\limits_{x∉[0, 1]} 0$。

$⇓$ $P_n [f (t) = 1; x; y ]{y = 1 - x} ≡ \sum\limits{i=0}^n \dfrac{n!}{i! · (n - i)!} · x^i · y^{n - i} = (x + y)^n = 1$            
$⇓$ $\sum\limits_{i=1}^n \dfrac{n!}{(i - 1)! · (n - i)!} · x^{i - 1} · y^{n - i} = \dfrac{∂}{∂ x} (x + y)^n = n · (x + y)^{n - 1}$            
$⇓$ $P_n [f (t) = t; x; y ]{y=1-x} ≡ \sum\limits{i=0}^{n} \dfrac{i}{n} · \dfrac{n!}{i! · (n - i)!} · x^i · y^{n - i} = x · (x + y)^{n - 1} = x$            
$⇓$ $\sum\limits_{i=1}^n \dfrac{i}{n} · \dfrac{n!}{(i - 1)! · (n - i)!} · x^{i - 1} · y^{n - i} = \dfrac{∂}{∂ x} [x · (x + y)^{n - 1}] = (x + y)^{n - 1} + (n - 1) · x · (x + y)^{n - 2}$            
$⇓$ $P_n [f (t) = t^2; x; y ]{y=1-x} ≡ \sum\limits{i=0}^n \dfrac{i^2}{n^2} · \dfrac{n!}{i! · (n - i)!} · x^{i} · y^{n - 1} = \dfrac{x}{n} · [ (x + y)^{n - 1} + (n - 1) · x · (x + y)^{n - 2} ] = \left( 1 - \dfrac{1}{n} \right) · x^2 + \dfrac{1}{n} · x$            
               
$⇓$ $\sum\limits_{i=0}^n \left[ \dfrac{i}{n} - x \right]^2 · \dfrac{n!}{i! · (n - i)!} · x^i · (1 - x)^{n - i} = \sum\limits_{i=0}^n \left[ \dfrac{i^2}{n^2} - 2 · x · \dfrac{i}{n} + x^2 \right] · \dfrac{n!}{i! · (n - i)!} · x^i · (1 - x)^{n - i}$            
$⇓$ $\sum\limits_{i=0}^n \left[ \dfrac{i}{n} - x \right]^2 · \dfrac{n!}{i! · (n - i)!} · x^i · (1 - x)^{n - i} = \left[ \left( 1 - \dfrac{1}{n} \right) · x^2 + \dfrac{1}{n} · x \right] - 2 · x · x + x^2 · 1 = \dfrac{1}{n} · x · (1 - x) ≤ \dfrac{1}{n} · \dfrac{1}{2} · \left( 1 - \dfrac{1}{2} \right) = \dfrac{1}{4 · n}$            
               
$⇓$ $[ ∀ε>0;∃δ>0; y - x < δ \mathop{⇒}\limits_{x,y∈[0, 1]} f (y) - f (x) < ε ] ∧ \left[ f (y) - f (x) \mathop{≤}\limits_{x,y∈[0, 1]} \mathrm{Sup.} ≡ \sup\limits_{x∈[0, 1]} f (x) - \inf\limits_{x∈[0, 1]} f (x) \right] ∧ \left[ f (x) = \sum\limits_{i=0}^n f (x) · \dfrac{n!}{i! · (n - i)!} · x^i · (1 - x)^{n - i} \right]$
$⇓$ $\sum\limits_{i=0}^n \left f \left( \dfrac{i}{n} \right) - f (x) \right · \dfrac{n!}{i! · (n - i)!} · x^i · (1 - x)^{n - i} ≤ \left[ ε · \sum\limits_{\left \frac{i}{n} - x \right <δ}^{n} \dfrac{n!}{i! · (n - i)!} · x^i · (1 - x)^{n - i} + \dfrac{\mathrm{2 · Sup.} }{δ^2} · \sum\limits_{\left \frac{i}{n} - x \right ≥δ}^n \left[ \dfrac{i}{n} - x \right]^2 · \dfrac{n!}{i! · (n - i)!} · x^i · (1 - x)^{n - i} \right]$
$⇓$ $\lim\limits_{n⇝∞⁺} P_n [f (t); x; y ]_{y=1-x} - f (x) ≤ \lim\limits_{n⇝∞⁺} \sum\limits_{i=0}^n \left f \left( \dfrac{i}{n} \right) - f (x) \right · \dfrac{n!}{i! · (n - i)!} · x^i · (1 - x)^{n - i} ≤ \lim\limits_{n⇝∞⁺} \left[ ε · 1 + \dfrac{\mathrm{2 · Sup.} }{δ^2 · 4 · n} \right] \mathop{⇝}\limits^{ε⇝0^+} 0$    
$⇓$ $\lim\limits_{n⇝∞⁺} P_n [f (t); x; y ]{y=1-x} \mathop{↭}\limits{x∈[0, 1]} f (x)$            

步骤二:[离散]构造性多项式函数在闭区间$[α, β]$上一致逼近连续函数$h (y)$,$y = α + x · (β - α), x = \dfrac{y - α}{β - α}$。

$\left[ \lim\limits_{n⇝∞⁺} P_n (x) \mathop{↭}\limits_{x∈[0, 1]} f (x) \mathop{=}\limits_{x∈[0, 1]} h (y) \mathop{=}\limits_{y∈[α, β]} h [α + x · (β - α)] \right] ⇔ \left[ \lim\limits_{n⇝∞⁺} P_n \left( \dfrac{y - α}{β - α} \right) \mathop{↭}\limits_{x∈[0, 1]} h (y) \right]$

###